Advertisement

Cell Motility pp 207-236 | Cite as

Collective Effects in Arrays of Cilia and Rotational Motors

  • Peter Lenz
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Summary

The movement of cilia in arrays is very often coordinated. Neighboring cilia beat cooperatively in a synchronized fashion or they maintain a constant phase difference creating a metachronal wave. This collective ciliar motion is used by many microorganisms for swimming and feeding. There is also strong evidence that ciliar (nodal) flow plays an important role in the establishment of left and right in developing vertebrates. In this short review, we summarize current theoretical efforts in analyzing the influence of hydrodynamic interactions on collective effects in arrays of cilia. Analytical and numerical models for the beating of a single cilium are introduced and used to calculate the motion in the surrounding flow. In arrays, the velocity field induced by a cilium exerts forces on the neighboring cilia, giving rise to hydrodynamic interactions. The importance of these interactions for collective ciliar beating is analyzed in specific models and in a more general framework. We also discuss the influence of boundary conditions and the tilting of monocilia on the nodal flow. Finally, the importance of hydrodynamic interaction for collections of rotational motors are studied. We conclude with some examples of possible applications.

Keywords

Hydrodynamic Interaction Nodal Surface Power Stroke Rotational Motor Recovery Stroke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DePamphilis, M & Adler, J. (1971) J. Bacteriol. 105, 384–95.Google Scholar
  2. 2.
    DePamphilis, M & Adler, J. (1971) J. Bacteriol. 105, 396–407.Google Scholar
  3. 3.
    Berg, H & Anderson, R. (1973) Nature 245, 380–2.CrossRefADSGoogle Scholar
  4. 4.
    Silverman, M & Simon, M. (1974) Nature 249, 73–4.CrossRefADSGoogle Scholar
  5. 5.
    Bray, D. (2001) Cell Motility. (Garland, New York).Google Scholar
  6. 6.
    Berg, H. (1993) Random Walks in Biology. (Princeton University Press, Princeton).Google Scholar
  7. 7.
    Vogel, S. (1996) Life in Moving Fluids: The Physical Biology of Flow. (Princeton University Press, Princeton).Google Scholar
  8. 8.
    Marshall, W & Nonaka, S. (2006) Curr. Biol. 16, R604–14.CrossRefGoogle Scholar
  9. 9.
    Alberts, B & et al. (2002) Molecular Biology of the Cell, 4th ed. (Garland, New York).Google Scholar
  10. 10.
    Blake, J & Sleigh, M. (1974) Biol. Rev. Camb. Philos. Soc. 49, 85–125.CrossRefGoogle Scholar
  11. 11.
    Nonaka, S, Tanaka, Y, Okada, Y, Takeda, S, Harada, A, Kanai, Y, Kido, M, & Hirokawa, N. (1998) Cell 95, 829–37.Google Scholar
  12. 12.
    Wheatley, D. (2004) Cell. Biol. Int. 28, 75–7.Google Scholar
  13. 13.
    Hirokawa, N, Tanaka, Y, Okada, Y, & Takeda, S. (2006) Cell 125, 33–45.CrossRefGoogle Scholar
  14. 14.
    Tamm, S. (1984) J. Exp. Biol. 113, 401–408.Google Scholar
  15. 15.
    Tamm, S, Sonneborn, T, & Dippell, R. (1975) J. Cell Biol. 64, 98–112.CrossRefGoogle Scholar
  16. 16.
    Knight-Jones, E. (1954) Q. J. Microsc. Sci. 95, 503–21.Google Scholar
  17. 17.
    Jahn, T & Votta, J. (1972) Ann. Rev. Fluid Mech. 4, 93–116.CrossRefADSGoogle Scholar
  18. 18.
    Aiello, E & Sleigh, M. (1972) J. Cell. Biol. 54, 493–506.CrossRefGoogle Scholar
  19. 19.
    Yoshida, M, Muneyuki, E, & Hisabori, T. (2001) Nat. Rev. Mol. Cell. Biol. 2, 669–77.CrossRefGoogle Scholar
  20. 20.
    Kinosita, K, Yasuda, R, Noji, H, Ishiwata, S, & Yoshida, M. (1998) Cell 93, 21–4.CrossRefGoogle Scholar
  21. 21.
    Berg, H. (2000) Physics Today, January pp. 25–29.Google Scholar
  22. 22.
    Purcell, E. (1997) Proc. Natl. Acad. Sci. USA 94, 11307–11.Google Scholar
  23. 23.
    Berg, H. (2003) Annu. Rev. Biochem. 72, 19–54.CrossRefGoogle Scholar
  24. 24.
    Zagoory, O, Braiman, A, Gheber, L, & Priel, Z. (2001) Am. J. Physiol. Cell. Physiol. 280, C100–9.Google Scholar
  25. 25.
    Okamoto, K & Nakaoka, Y. (1994) J. Exp. Biol. 192, 61–72.Google Scholar
  26. 26.
    Blake, J. (1972) J. Fluid Mech. 55, 1–23.MATHCrossRefADSGoogle Scholar
  27. 27.
    Brennen, C & Winet, H. (1977) Ann. Rev. Fluid Mech. 9, 339–398.CrossRefADSGoogle Scholar
  28. 28.
    Liron, N & Mochon, S. (1976) J. Fluid Mech. 75, 593–607.MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Lighthill, M. (1952) Comm. Pure Appl. Math. 5, 109–118.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Blake, J. (1971) J. Fluid Mech. 46, 199–208.Google Scholar
  31. 31.
    Cartwright, J, Piro, O, & Tuval, I. (2004) Proc. Natl. Acad. Sci. USA 101, 7234–9.Google Scholar
  32. 32.
    Lenz, P & Ryskin, A. (2006) Phys. Biol. 3, 285–94.CrossRefADSGoogle Scholar
  33. 33.
    Landau, L & Lifshitz, E. (1959) Hydrodynamics. (Pergamon, New York).Google Scholar
  34. 34.
    Lenz, P. (2007) to be published.Google Scholar
  35. 35.
    Gueron, S & Liron, N. (1992) Biophys. J 63, 1045–1058.CrossRefGoogle Scholar
  36. 36.
    Camalet, S & Jülicher, F. (2000) New J. Phys. 2, 24.1–24.23.CrossRefGoogle Scholar
  37. 37.
    Gueron, S, Levit-Gurevich, K, Liron, N, & Blum, J. (1997) Proc. Natl. Acad. Sci. USA 94, 6001–6.MATHCrossRefADSGoogle Scholar
  38. 38.
    Gueron, S & Levit-Gurevich, K. (1998) Biophys. J. 74, 1658–76.CrossRefGoogle Scholar
  39. 39.
    Gueron, S & Levit-Gurevich, K. (2001) Proc. Biol. Sci. 268, 599–607.Google Scholar
  40. 40.
    Kim, Y & Netz, R. (2006) Phys. Rev. Lett. 96, 158101.CrossRefADSGoogle Scholar
  41. 41.
    Ermak, D & McCammon, J. (1978) J. Chem. Phys. 69, 1352–1360.CrossRefADSGoogle Scholar
  42. 42.
    Lenz, P, Joanny, J, Julicher, F, & Prost, J. (2003) Phys. Rev. Lett. 91, 108104.CrossRefADSGoogle Scholar
  43. 43.
    Lenz, P, Joanny, J, Julicher, F, & Prost, J. (2004) Eur. Phys. J. E 13, 379–90.CrossRefGoogle Scholar
  44. 44.
    Reichert, M & Stark, H. (2005) Eur. Phys. J. E 17, 493–500.CrossRefGoogle Scholar
  45. 45.
    Lagomarsino, M, Jona, P, & Bassetti, B. (2003) Phys. Rev. E 68, 021908.CrossRefADSGoogle Scholar
  46. 46.
    Lenz, P & Eckhardt, B. (2007) to be published.Google Scholar
  47. 47.
    Vilfan, A & Julicher, F. (2006) Phys. Rev. Lett. 96, 058102.CrossRefADSGoogle Scholar
  48. 48.
    Acebrón, J. A, Bonilla, L. L, Pérez Vicente, C. J, Ritort, F, & Spigler, R. (2005) Rev. Mod. Phys. 77, 137–185.CrossRefADSGoogle Scholar
  49. 49.
    Gilbert, S. (2003) Developmental Biology (7th ed.). (Sinauer, Sunderland, Ma).Google Scholar
  50. 50.
    Beddington, R & Robertson, E. (1999) Cell 96, 195–209.CrossRefGoogle Scholar
  51. 51.
    Alarcon, V & Marikawa, Y. (2003) Biol. Reprod. 69, 1208–12.CrossRefGoogle Scholar
  52. 52.
    Tsang, T, Kinder, S, & Tam, P. (1999) Cell. Mol. Biol. 45, 493–503.Google Scholar
  53. 53.
    Brown, N & Wolpert, L. (1990) Development 109, 1–9.Google Scholar
  54. 54.
    Okada, Y, Nonaka, S, Tanaka, Y, Saijoh, Y, Hamada, H, & Hirokawa, N. (1999) Mol. Cell 4, 459–68.CrossRefGoogle Scholar
  55. 55.
    Essner, J, Vogan, K, Wagner, M, Tabin, C, Yost, H, & Brueckner, M. (2002) Nature 418, 37–8.CrossRefADSGoogle Scholar
  56. 56.
    Okada, Y, Takeda, S, Tanaka, Y, Belmonte, J, & Hirokawa, N. (2005) Cell 121, 633–44.CrossRefGoogle Scholar
  57. 57.
    Zhou, X, Sasaki, H, Lowe, L, Hogan, B, & Kuehn, M. (1993) Nature 361, 543–7.CrossRefADSGoogle Scholar
  58. 58.
    Collignon, J, Varlet, I, & Robertson, E. (1996) Nature 381, 155–8.CrossRefADSGoogle Scholar
  59. 59.
    Meyers, E & Martin, G. (1999) Science 285, 403–6.CrossRefGoogle Scholar
  60. 60.
    Hamada, H, Meno, C, Watanabe, D, & Saijoh, Y. (2002) Nat. Rev. Genet. 3, 103–13.CrossRefGoogle Scholar
  61. 61.
    Takeda, S, Yonekawa, Y, Tanaka, Y, Okada, Y, Nonaka, S, & Hirokawa, N. (1999) J. Cell. Biol. 145, 825–36.CrossRefGoogle Scholar
  62. 62.
    Nonaka, S, Shiratori, H, Saijoh, Y, & Hamada, H. (2002) Nature 418, 96–9.CrossRefADSGoogle Scholar
  63. 63.
    Hummel, K. P & Chapman, D. B. (1959) J. Hered. 50, 8–13.Google Scholar
  64. 64.
    Yokoyama, T, Copeland, N, Jenkins, N, Montgomery, C, Elder, F, & Overbeek, P. (1993) Science 260, 679–82.CrossRefADSGoogle Scholar
  65. 65.
    Tabin, C & Vogan, K. (2003) Genes Dev. 17, 1–6.CrossRefGoogle Scholar
  66. 66.
    McGrath, J, Somlo, S, Makova, S, Tian, X, & Brueckner, M. (2003) Cell 114, 61–73.CrossRefGoogle Scholar
  67. 67.
    Tanaka, Y, Okada, Y, & Hirokawa, N. (2005) Nature 435, 172–7.CrossRefADSGoogle Scholar
  68. 68.
    Tabin, C. (2006) Cell 127, 27–32.CrossRefGoogle Scholar
  69. 69.
    Buceta, J, Ibanes, M, Rasskin-Gutman, D, Okada, Y, Hirokawa, N, & Izpisua-Belmonte, J. (2005) Biophys. J. 89, 2199–209.CrossRefGoogle Scholar
  70. 70.
    Lenz, P & Nelson, D. (2001) Phys. Rev. Lett. 87, 125703.CrossRefADSGoogle Scholar
  71. 71.
    Lenz, P & Nelson, D. (2003) Phys. Rev. E 67, 031502.CrossRefADSGoogle Scholar
  72. 72.
    Boyer, P. (1993) Biochim. Biophys. Acta 1140, 215.CrossRefADSGoogle Scholar
  73. 73.
    Abrahams, J, Leslie, A, Lutter, R, & Walker, J. (1994) Nature 370, 621–8.CrossRefADSGoogle Scholar
  74. 74.
    Noji, H, Yasuda, R, Yoshida, M, & Kinosita, Jr, K. (1997) Nature 386, 299–302.CrossRefADSGoogle Scholar
  75. 75.
    Brunn, P. (1976) Rheol. Acta 15, 163.MATHCrossRefGoogle Scholar
  76. 76.
    Cogan, N & Wolgemuth, C. (2005) Biophys. J. 88, 2525–9.CrossRefGoogle Scholar
  77. 77.
    Grzybowski, B & Stone, H.A.and Whitesides, G. (2000) Nature 405, 1033.CrossRefADSGoogle Scholar
  78. 78.
    Grzybowski, B, Jiang, X, Stone, H, & Whitesides, G. (2001) Phys. Rev. E 64, 011603.CrossRefADSGoogle Scholar
  79. 79.
    Grzybowski, B, Radkowski, M, Campbell, C, Lee, J, & Whitesides, G. (2004) Appl. Phys. Lett. 84, 1798–1800.CrossRefADSGoogle Scholar
  80. 80.
    Galajda, P & Ormos, P. (2002) Appl. Phys. Lett. 80, 4653.CrossRefADSGoogle Scholar
  81. 81.
    Bonin, K, Kourmanov, B, & Walker, T. (2002) Optics Exp. 10, 984–989.ADSGoogle Scholar
  82. 82.
    Hernandez, J, Kay, E, & Leigh, D. (2004) Science 306, 1532–7.CrossRefADSGoogle Scholar
  83. 83.
    Dharmadhikari, J, Roy, S, Dharmadhikari, A, Sharma, S, & Mathur, D. (2004) Appl. Phys. Lett. 85, 6048–6050.CrossRefADSGoogle Scholar
  84. 84.
    Hess, H & Vogel, V. (2001) J. Biotechnol. 82, 67–85.Google Scholar
  85. 85.
    Jia, L, Moorjani, S, Jackson, T, & Hancock, W. (2004) Biomed. Microdev. 6, 67–74.CrossRefGoogle Scholar
  86. 86.
    Soong, R, Bachand, G, Neves, H, Olkhovets, A, Craighead, H, & Montemagno, C. (2000) Science 290, 1555–8.CrossRefADSGoogle Scholar
  87. 87.
    Hiratsuka, Y, Miyata, M, Tada, T, & Uyeda, T. (2006) Proc. Natl. Acad. Sci. USA 103, 13618–23.Google Scholar
  88. 88.
    Darnton, N, Turner, L, Breuer, K, & Berg, H. (2004) Biophys. J. 86, 1863–70.CrossRefADSGoogle Scholar
  89. 89.
    Blake, J. (1971) Proc. Camb. Phil. Soc. 70, 303–310.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Lenz
    • 1
  1. 1.Fachbereich PhysikPhilipps-Universität MarburgGermany

Personalised recommendations