Skip to main content

Continuum Modelling of Nanoscale Hydrodynamics

  • Chapter
Book cover Nanoscale Phenomena

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrat, J.-L., Bocquet, L., 1999a, Large slip effect at a nonwetting fluid–solid interface. Physical Review Letters, 82, pp. 4671–4674.

    Article  CAS  Google Scholar 

  • Barrat, J.-L., Bocquet, L., 1999b, Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 112, pp. 119–128.

    Article  CAS  Google Scholar 

  • Batchelor, G. K., 1967, An Introduction to Fluid Dynamics. Cambridge University Press.

    Google Scholar 

  • Blake, T. D., Haynes, J. M., 1969, Kinetics of liquid/liquid displacement. Journal of Colloid and Interface Science, 30, pp. 421–423.

    Article  CAS  Google Scholar 

  • Briant, A. J., Yeomans, J. M., 2004, Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Physical Review E, 69, p. 031603.

    Article  CAS  Google Scholar 

  • Cahn, J. W., Hilliard, J. E., 1958, Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28, pp. 258–267.

    Article  CAS  Google Scholar 

  • Chen, H. Y., Jasnow, D., Vinals, J., 2000, Interface and contact line motion in a two phase fluid under shear flow. Physical Review Letters, 85, pp. 1686–1689.

    Article  CAS  Google Scholar 

  • Cox, R. G., 1986, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics, 168, pp. 169–194.

    Article  CAS  Google Scholar 

  • Doi, M., 1983, Variational principle for the Kirkwood theory for the dynamics of polymer solutions and suspensions. Journal of Chemical Physics, 79, pp. 5080–5087.

    Article  CAS  Google Scholar 

  • Dussan V. E. B., 1976, The moving contact line: the slip boundary condition. Journal of Fluid Mechanics, 77, pp. 665–684.

    Article  Google Scholar 

  • Dussan V. E. B., Davis, S. H., 1974, On the motion of a fluid–fluid interface along a solid surface. Journal of Fluid Mechanics, 65, pp. 71–95.

    Article  Google Scholar 

  • Edwards, S. F., Freed, K. F., 1974, Theory of the dynamical viscosity of polymer solutions. Journal of Chemical Physics, 61, pp. 1189–1202.

    Article  CAS  Google Scholar 

  • De Gennes, P. G., 1985, Wetting: Statics and dynamics. Reviews of Modern Physics, 57, pp. 827–863.

    Article  Google Scholar 

  • Glasner, K. B., 2005, Variational models for moving contact lines and the quasi-static approximation. European Journal of Applied Mathematics, 16, pp. 1–28.

    Article  Google Scholar 

  • Hadjiconstantinou, N. G., 1999, Hybrid atomistic-continuum formulations and the moving contact line problem. Journal of Computational Physics, 154, pp. 245–265.

    Article  Google Scholar 

  • Hocking, L. M., 1977, A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. Journal of Fluid Mechanics, 79, pp. 209–229.

    Article  Google Scholar 

  • Huh, C., Mason, S. G., 1977, The steady movement of a liquid meniscus in a capillary tube. Journal of Fluid Mechanics, 81, pp. 401–419.

    Article  Google Scholar 

  • Huh, C., Scriven, L. E., 1971, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 35, pp. 85–101.

    Article  CAS  Google Scholar 

  • Jacqmin, D., 2000, Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics, 402, pp. 57–88.

    Article  CAS  Google Scholar 

  • Koplik, J., Banavar, J. R., Willemsen, J. F., 1988, Molecular dynamics of Poiseuille flow and moving contact lines. Physical Review Letters, 60, pp. 1282–1285.

    Article  Google Scholar 

  • Moffatt, H. K., 1964, Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics, 18, pp. 1–18.

    Article  Google Scholar 

  • Navier, C. L. M. H., 1823, Memoire sur les lois du movement des fluides. Mem. l’Acad. R. Sci. l’Inst. France, 6, pp. 389–440.

    Google Scholar 

  • Pismen, L. M., Pomeau, Y., 2000, Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Physical Review E, 62, pp. 2480–2492.

    Article  CAS  Google Scholar 

  • Onsager, L., 1931a, Reciprocal relations in irreversible processes. I. Physical Review, 37, pp. 405–426.

    Article  CAS  Google Scholar 

  • Onsager, L., 1931b, Reciprocal relations in irreversible processes. II. Physical Review, 38, pp. 2265–2279.

    Article  CAS  Google Scholar 

  • Qian, T. Z., Wang, X. P., Sheng, P., 2003, Molecular scale contact line hydrodynamics of immiscible flows. Physical Review E, 68, pp. 016306.

    Article  Google Scholar 

  • Qian, T. Z., Wang, X. P., Sheng, P., 2004, Power-law slip profile of the moving contact line in two-phase immiscible flows. Physical Review Letters, 93, p. 094501.

    Article  Google Scholar 

  • Qian, T. Z., Wang, X. P., Sheng, P., 2006, A variational approach to moving contact line hydrodynamics. Journal of Fluid Mechanics, 564, pp. 333–360.

    Article  CAS  Google Scholar 

  • Rayleigh, L., 1873, Some general theorems relating to vibrations. Proceedings of the London Mathematical Society, 4, pp. 357–368.

    Google Scholar 

  • Ren, W., E, W. 2007, Boundary conditions for the moving contact line problem. Physics of Fluids, 19, p. 022101.

    Article  Google Scholar 

  • Ren, W., Wang, X. P., 2000, An iterative grid redistribution method for singular problems in multiple dimensions. Journal of Computational Physics, 159, pp. 246–273.

    Article  Google Scholar 

  • Shikhmurzaev, Y. D., 1997, Moving contact lines in liquid/liquid/solid systems. Journal of Fluid Mechanics, 334, pp. 211–249.

    Article  CAS  Google Scholar 

  • Seppecher, P., 1996, Moving contact lines in the Cahn-Hilliard theory. International Journal of Engineering Science, 34, pp. 977–992.

    Article  Google Scholar 

  • Thompson, P. A., Robbins, M. O., 1989, Simulations of contact-line motion: Slip and the dynamic contact angle. Physical Review Letters, 63, pp. 766–769.

    Article  CAS  Google Scholar 

  • Zhou, M. Y., Sheng, P., 1990, Dynamics of immiscible-fluid displacement in a capillary tube. Physical Review Letters, 64, pp. 882–885.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sheng, P., Qian, T., Wang, X. (2008). Continuum Modelling of Nanoscale Hydrodynamics. In: Tang, Z., Sheng, P. (eds) Nanoscale Phenomena. Lecture Notes in Nanoscale Science and Technology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73048-6_9

Download citation

Publish with us

Policies and ethics