Continuum Modelling of Nanoscale Hydrodynamics

  • Ping Sheng
  • Tiezheng Qian
  • Xiaoping Wang
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 2)


Molecular Dynamic Simulation Contact Line Capillary Number Slip Length Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrat, J.-L., Bocquet, L., 1999a, Large slip effect at a nonwetting fluid–solid interface. Physical Review Letters, 82, pp. 4671–4674.CrossRefGoogle Scholar
  2. Barrat, J.-L., Bocquet, L., 1999b, Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 112, pp. 119–128.CrossRefGoogle Scholar
  3. Batchelor, G. K., 1967, An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
  4. Blake, T. D., Haynes, J. M., 1969, Kinetics of liquid/liquid displacement. Journal of Colloid and Interface Science, 30, pp. 421–423.CrossRefGoogle Scholar
  5. Briant, A. J., Yeomans, J. M., 2004, Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Physical Review E, 69, p. 031603.CrossRefGoogle Scholar
  6. Cahn, J. W., Hilliard, J. E., 1958, Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 28, pp. 258–267.CrossRefGoogle Scholar
  7. Chen, H. Y., Jasnow, D., Vinals, J., 2000, Interface and contact line motion in a two phase fluid under shear flow. Physical Review Letters, 85, pp. 1686–1689.CrossRefGoogle Scholar
  8. Cox, R. G., 1986, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics, 168, pp. 169–194.CrossRefGoogle Scholar
  9. Doi, M., 1983, Variational principle for the Kirkwood theory for the dynamics of polymer solutions and suspensions. Journal of Chemical Physics, 79, pp. 5080–5087.CrossRefGoogle Scholar
  10. Dussan V. E. B., 1976, The moving contact line: the slip boundary condition. Journal of Fluid Mechanics, 77, pp. 665–684.CrossRefGoogle Scholar
  11. Dussan V. E. B., Davis, S. H., 1974, On the motion of a fluid–fluid interface along a solid surface. Journal of Fluid Mechanics, 65, pp. 71–95.CrossRefGoogle Scholar
  12. Edwards, S. F., Freed, K. F., 1974, Theory of the dynamical viscosity of polymer solutions. Journal of Chemical Physics, 61, pp. 1189–1202.CrossRefGoogle Scholar
  13. De Gennes, P. G., 1985, Wetting: Statics and dynamics. Reviews of Modern Physics, 57, pp. 827–863.CrossRefGoogle Scholar
  14. Glasner, K. B., 2005, Variational models for moving contact lines and the quasi-static approximation. European Journal of Applied Mathematics, 16, pp. 1–28.CrossRefGoogle Scholar
  15. Hadjiconstantinou, N. G., 1999, Hybrid atomistic-continuum formulations and the moving contact line problem. Journal of Computational Physics, 154, pp. 245–265.CrossRefGoogle Scholar
  16. Hocking, L. M., 1977, A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. Journal of Fluid Mechanics, 79, pp. 209–229.CrossRefGoogle Scholar
  17. Huh, C., Mason, S. G., 1977, The steady movement of a liquid meniscus in a capillary tube. Journal of Fluid Mechanics, 81, pp. 401–419.CrossRefGoogle Scholar
  18. Huh, C., Scriven, L. E., 1971, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 35, pp. 85–101.CrossRefGoogle Scholar
  19. Jacqmin, D., 2000, Contact-line dynamics of a diffuse fluid interface. Journal of Fluid Mechanics, 402, pp. 57–88.CrossRefGoogle Scholar
  20. Koplik, J., Banavar, J. R., Willemsen, J. F., 1988, Molecular dynamics of Poiseuille flow and moving contact lines. Physical Review Letters, 60, pp. 1282–1285.CrossRefGoogle Scholar
  21. Moffatt, H. K., 1964, Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics, 18, pp. 1–18.CrossRefGoogle Scholar
  22. Navier, C. L. M. H., 1823, Memoire sur les lois du movement des fluides. Mem. l’Acad. R. Sci. l’Inst. France, 6, pp. 389–440.Google Scholar
  23. Pismen, L. M., Pomeau, Y., 2000, Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Physical Review E, 62, pp. 2480–2492.CrossRefGoogle Scholar
  24. Onsager, L., 1931a, Reciprocal relations in irreversible processes. I. Physical Review, 37, pp. 405–426.CrossRefGoogle Scholar
  25. Onsager, L., 1931b, Reciprocal relations in irreversible processes. II. Physical Review, 38, pp. 2265–2279.CrossRefGoogle Scholar
  26. Qian, T. Z., Wang, X. P., Sheng, P., 2003, Molecular scale contact line hydrodynamics of immiscible flows. Physical Review E, 68, pp. 016306.CrossRefGoogle Scholar
  27. Qian, T. Z., Wang, X. P., Sheng, P., 2004, Power-law slip profile of the moving contact line in two-phase immiscible flows. Physical Review Letters, 93, p. 094501.CrossRefGoogle Scholar
  28. Qian, T. Z., Wang, X. P., Sheng, P., 2006, A variational approach to moving contact line hydrodynamics. Journal of Fluid Mechanics, 564, pp. 333–360.CrossRefGoogle Scholar
  29. Rayleigh, L., 1873, Some general theorems relating to vibrations. Proceedings of the London Mathematical Society, 4, pp. 357–368.Google Scholar
  30. Ren, W., E, W. 2007, Boundary conditions for the moving contact line problem. Physics of Fluids, 19, p. 022101.CrossRefGoogle Scholar
  31. Ren, W., Wang, X. P., 2000, An iterative grid redistribution method for singular problems in multiple dimensions. Journal of Computational Physics, 159, pp. 246–273.CrossRefGoogle Scholar
  32. Shikhmurzaev, Y. D., 1997, Moving contact lines in liquid/liquid/solid systems. Journal of Fluid Mechanics, 334, pp. 211–249.CrossRefGoogle Scholar
  33. Seppecher, P., 1996, Moving contact lines in the Cahn-Hilliard theory. International Journal of Engineering Science, 34, pp. 977–992.CrossRefGoogle Scholar
  34. Thompson, P. A., Robbins, M. O., 1989, Simulations of contact-line motion: Slip and the dynamic contact angle. Physical Review Letters, 63, pp. 766–769.CrossRefGoogle Scholar
  35. Zhou, M. Y., Sheng, P., 1990, Dynamics of immiscible-fluid displacement in a capillary tube. Physical Review Letters, 64, pp. 882–885.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ping Sheng
    • 1
  • Tiezheng Qian
  • Xiaoping Wang
  1. 1.Department of Physics and Institute of Nano Science & TechnologyHong Kong University of Science and TechnologyHong KongChina

Personalised recommendations