Synthesis and Properties of Quasi-One-Dimensional Nitride Nanostructures

  • Yong-Bing Tang
  • Dai-Ming Tang
  • Chang Liu
  • Hong-Tao Cong
  • Hui-Ming Cheng
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 2)


Transmission Electron Microscopy Image Select Area Electron Diffraction Select Area Electron Diffraction Pattern Aluminum Nitride Apply Physic Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benjamin, M. C., Wang, C., Davis, R. F., and Nemanich, R. J. 1994, Observation of a negative electron-affinity for heteroepitaxial AlN on alpha(6H)-SiC(0001), Applied Physics Letters, 64, pp. 3288–3290.CrossRefGoogle Scholar
  2. Bonard, J. M., Salvetat, J. P., Stockli, T., de Heer, W. A., Forro, L. and Chatelain, A. 1998, Field emission from single-wall carbon nanotube films. Applied Physics Letters, 73, pp. 918–920.CrossRefGoogle Scholar
  3. Bradshaw, S. M. and Spicer, J. L. 1999, Combustion synthesis of aluminum nitride particles and whiskers. Journal of the American Chemical Society, 82, pp. 2293–2300.Google Scholar
  4. Cao, Y. G., Chen, X. L., Lan, Y. C., Li, J. Y., Xu, Y. P., Xu, T., Liu, Q. L. and Liang, J. K. 2000, Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. Journal of Crystal Growth, 213, pp. 198–202.CrossRefGoogle Scholar
  5. Chedru, M., Chermant, J. L. and Vicens, J. 2001, Thermal properties and Young’s modulus of Al-AlN composites. Journal of Materials Science Letters, 20, pp. 893–895.CrossRefGoogle Scholar
  6. Chen, G. D., Smith, M., Lin, J. Y., Jiang, H. X., Wei, S. H., Khan, M. A. and Sun, C. J. 1996, Fundamental optical transitions in GaN, Applied Physics Letters, 68, pp. 2784–2786.CrossRefGoogle Scholar
  7. Chen, X. and Gonsalves, K. E. 1997, Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process. Journal of Materials Research, 12, pp. 1274–1286.Google Scholar
  8. Dhingra, A. K. and Fishman, S. G. 1986, Interfaces in Metal-Matrix Composites (New Orleans, Metallurgical Society Inc.), p. 211.Google Scholar
  9. Geiger A. L. and Jackson, M. 1989, Low-expansion MMCs boost avionics. Advanced Materials & Processes, 136, pp. 23–30.Google Scholar
  10. Grabowski, S. P., Schneider, M., Nienhaus, H., Monch, W., Dimitrov, R., Ambacher, O. and Stutzmann, M. 2001, Electron affinity of AlxGa1-xN(0001) surfaces. Applied Physics Letters, 78, pp. 2503–2505.CrossRefGoogle Scholar
  11. Haber, J. A., Gibbons, P. C. and Buhro, W. E. 1997, Morphological control of nanocrystalline aluminum nitride: Aluminum chloride-assisted nanowhisker growth, Journal of the American Chemical Society,119, pp. 5455–5456.CrossRefGoogle Scholar
  12. Haber, J. A., Gibbons, P. C. and Buhro, W. E. 1998, Morphologically selective synthesis of nanocrystalline aluminum nitirde. Chemistry of Materials, 10, pp. 4062–4071.CrossRefGoogle Scholar
  13. He, J. H., Yang, R., Chue, Y. L., Chou, L. J., Chen, L. J. and Wang, Z. L. 2006, Aligned AlN nanorods with multi-tipped surfaces - Growth, field-emission, and cathodoluminescence properties. Advanced Materials, 18, pp. 650–654.CrossRefGoogle Scholar
  14. Huang, J. L. and Li, C. H. 1994, Microstructure and mechanical properties of aluminum nitride aluminum composite. Journal of Materials Research, 9, pp. 3153–3159.CrossRefGoogle Scholar
  15. Iijima, S. 1991, Helical microtubules of graphitic carbon. Nature, 354, pp. 56–58.CrossRefGoogle Scholar
  16. Inoue, A., Nosaki, K., Kim, B. G., Yamaguchi, T. and Masumoto, T. 1993, Mechanical strength of ultra-fine Al-AlN composites produced by a combined method of plasma-alloy reaction, spray deposition and hot pressing. Journal of Materials Science, 28, pp. 4398–4404.CrossRefGoogle Scholar
  17. Jeong, J. S., Lee, J. Y., Lee, C. J., An, S. J. and Yi, G. C. 2004, Synthesis and characterization of high-quality mathrmIn2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chemical Physics Letters, 384, pp. 246–250.CrossRefGoogle Scholar
  18. Jeong, S. H., Hwang, H. Y., Lee, K. H. and Jeong, Y. 2001, Template-based carbon nanotubes and their application to a field emitter. Applied Physics Letters, 78, pp. 2052–2054.CrossRefGoogle Scholar
  19. Kasu, M. and Kobayashi, N. 2001, Spontaneous ridge-structure formation and large field emission of heavily Si-doped AlN. Applied Physics Letters, 78, pp.1835–1837.Google Scholar
  20. Lai S. W. and Chung, D. D. 1994, Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon-carbide or alumina particle-reinforced aluminum. Journal of Materials Science, 29, pp. 6181–6198.CrossRefGoogle Scholar
  21. Lan, Y. C., Chen, X. L., Cao, Y. G, Xu, Y. P., Xun, L. D., Xu, T. and Liang, J. K. 1999, Low-temperature synthesis and photoluminescence of AlN. Journal of Crystal Growth, 207, pp. 247–250.CrossRefGoogle Scholar
  22. Li, Y. B., Bando, Y. and Golberg, D. 2003, mathrmMoS2 nanoflowers and their field-emission properties. Applied Physics Letters, 82, pp. 1962–1964.CrossRefGoogle Scholar
  23. Liang, C., Shimizu, Y., Sasaki, T., Umehara, H. and Koshizaki, N. J. 2004, Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation. Journal of Physics Chemical B, 108, pp. 9728–9733.CrossRefGoogle Scholar
  24. Liang, Y. J. and Che M. X. 1993, Handbook for Thermodynamic Data of Inorganic Compounds (China, Press of Northeast University).Google Scholar
  25. Liu, B. D., Bando, Y., Tang, C. C., Golberg, D., Xie, R. G. and Sekiguchi T. 2005a, Synthesis and optical study of crystalline GaP nanoflowers, Applied Physics Letters, 86, p. 083107.Google Scholar
  26. Liu, C., Hu, Z., Wu, Q., Wang, X. Z., Chen, Y., Sang, H., Zhu, J. M., Deng, S. Z. and Xu, N. S. 2005b, Vapor-solid growth and characterization of aluminum nitride nanocones, Journal of the American Chemical Society, 127, pp. 1318–1322.CrossRefGoogle Scholar
  27. Liu, J., Zhang, X., Zhang, Y., He, R. and Zhu J. 2001, Novel synthesis of AlN nanowires with controlled diameters. Journal of Materials Research, 16, pp. 3133–3138.Google Scholar
  28. Mattila, T. and Nieminen, R. M. 1996, Ab initio study of oxygen point defects in GaAs, GaN, and AlN. Physical Review B, 54, pp. 16676–16682.CrossRefGoogle Scholar
  29. Morales, A. M. and Lieber, C. M. 1998, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 279, pp. 208–211.CrossRefGoogle Scholar
  30. Nakamura, S. 1998, The roles of structural imperfections in InGaN-Based blue light-emitting diodes and laser diodes. Science, 281, pp. 956–961.CrossRefGoogle Scholar
  31. Pan, Z. W., Dai, Z. R. and Wang, Z. L. 2001, Nanobelts of semiconducting oxides. Science, 291, pp. 1947–1949.CrossRefGoogle Scholar
  32. Piggott, M. R. 1980, Load-Bearing Fibre Composites (New York: Pergamon Press Inc.), Ch.10, p. 286.Google Scholar
  33. Ronning, C., Banks, A. D., McCarson, B. L., Schlesser, R., Sitar, Z., Davis, R. F., Ward, B. L. and Nemanich, R. J. 1998, Structural and electronic properties of boron nitride thin films containing silicon. Journal of Applied Physics, 84, pp. 5046–5051.CrossRefGoogle Scholar
  34. Shi, S. C., Chen, C. F., Chattopadhyay, S., Lan, Z. H., Chen, K. H. and Chen, L. C. 2005, Growth of single-crystalline wurtzite aluminum nitride nanotips with a self-selective apex angle. Advanced Functional Materials, 15, pp. 781–786.CrossRefGoogle Scholar
  35. Siwiec, J., Sokolowska, A., Olszyna, A., Dwilinski, R., Kaminska, M. and Hrabowska, J. K. 1998, Photoluminescence properties of nanocrystalline, wide band gap nitrides (mathrmC3N4, BN, AlN, GaN), Nanostructural Materials, 10, pp. 625–634.CrossRefGoogle Scholar
  36. Sugino, T., Hori, T., Kimura, C. and Yamamoto, T. 2001, Field emission from GaN surfaces roughened by hydrogen plasma treatment. Applied Physics Letters, 78, pp. 3229–3231.CrossRefGoogle Scholar
  37. Suzuki, M., Uenoyama, T. and Yanase, A. 1995, First-principles calculations of effective- mass parameters of AlN and GaN, Physical Review B, 52, pp. 8132–8139.CrossRefGoogle Scholar
  38. Tang, Y. B., Cong, H. T., Chen, Z. G. and Cheng, H. M. 2005a, An array of Eiffel-tower-shape AlN nanotips and its field emission properties. Applied Physics Letters, 86, p. 233104.Google Scholar
  39. Tang, Y. B., Cong, H. T., Wang, Z. M. and Cheng H. M. 2005b, Synthesis of rectangular cross-section nanofibers AlN by chemical vapor deposition. Chemical Physics Letters, 416, pp.171–175.CrossRefGoogle Scholar
  40. Tang, Y. B., Cong, H. T., Zhao, Z. G. and Cheng, H. M., 2005c, Field emission from AlN nanorod array. Applied Physics Letters, 86, p. 153104.Google Scholar
  41. Tang, D. M., Liu, C., Cong, H. T. and Cheng, H. M. 2006a, Platelet boron nitride nanowires. Nano, 1, pp. 65–71.CrossRefGoogle Scholar
  42. Tang, Y. B., Cong, H. T. and Cheng, H. M. 2006b, Field emission from honeycomb-like network of vertically aligned AlN nanoplatelets, Applied Physics Letters, 89, p. 093113.Google Scholar
  43. Tang, Y. B., Cong, H. T., Wang, Z. M. and Cheng, H. M. 2006c, Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array. Applied Physics Letters, 89, pp. 253112.CrossRefGoogle Scholar
  44. Tang, Y. B., Cong, H. T., Li, F. and Cheng, H. M. 2007a, Synthesis and photoluminescent property of AlN nanobelt array on Si substrate. Diamond and Related Materials, 16, pp. 537–541.CrossRefGoogle Scholar
  45. Tang, Y. B, Liu, Y., Sun, C. H. and Cong, H. T. 2007b, AlN nanowires for Al-based composites with high strength and low thermal expansion. Journal of Materials Research (accepted).Google Scholar
  46. Taniyasu, Y., Kasu, M. and Makimoto, T. 2004, Field emission properties of heavily Si-doped AlN in triode-type display structure. Applied Physics Letters, 84, pp. 2115–2117.CrossRefGoogle Scholar
  47. Tanniyasu, Y., Kasu, M. and Makimoto, T. 2006, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, pp. 325–328.CrossRefGoogle Scholar
  48. Tondare, V. N., Balasubramanian, C., Shende, S. V., Joag, D. S., Godbole, V. P., Bhoraskar, S. V. and Bhadbhade, M. 2002, Field emission from open ended aluminum nitride nanotubes. Applied Physics Letters, 80, pp. 4813–4815.CrossRefGoogle Scholar
  49. Vicens, J., Chedru, M., Cubero, H. and Chermant, J. L. 2002, Effects of AlN additions and heat treatments on the compression behavior of Al-AlN composites. Journal of Materials Science Letters, 21, pp. 1505–1508.CrossRefGoogle Scholar
  50. Vurgaftman, I., Meyer, J. R. and Ram-Mohan, L. R. 2001, Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 89, pp. 5815–5875.CrossRefGoogle Scholar
  51. Ward, B. L., Nam, O. H., Hartman, J. D., English, S. L., McCarson, B. L., Schlesser, R., Sitar, Z., Davis, R. F. and Nemanish, R. J. 1998, Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy. Journal of Applied Physics, 84, pp. 5238–5242.CrossRefGoogle Scholar
  52. Wei, S. H. and Zunger, A. 1996, Valence band splittings and band offsets of AlN, GaN, and InN. Applied Physics Letters, 69, pp. 2719–2721.CrossRefGoogle Scholar
  53. Wu, Q., Hu, Z., Wang, X., Lu, Y., Chen, X., Xu, H. and Chen Y. 2003a, Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. Journal of the American Chemical Society, 125, pp. 10176–10177.CrossRefGoogle Scholar
  54. Wu, Q., Hu, Z., Wang, X. Z. and Chen, Y. 2003b, Synthesis and optical characterization of aluminum nitride. Journal of Physical Chemistry B, 107, pp. 9726–9729.CrossRefGoogle Scholar
  55. Wu, Q., Hu, Z., Wang, X., Hu, Y., Tian, Y. and Chen, Y. 2004, A simple route to aligned AlN nanowires. Diamond and Related Materials, 13, pp. 38–41.CrossRefGoogle Scholar
  56. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. 2003, One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 15, pp. 353–389.CrossRefGoogle Scholar
  57. Xu, C. X., Sun, X. W. and Chen, B. J. 2004, Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 84, pp. 1540–1542.CrossRefGoogle Scholar
  58. Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. L., Ettenberg, M. and Gilbert, S. L. 1973, Epitaxially grown AlN and its optical band gap. Journal of Applied Physics, 44, pp. 292–296.CrossRefGoogle Scholar
  59. Yin, L. W., Bando, Y., Zhu, Y. C., Li, M. S., Li, Y. B. and Golberg, D. 2005a, Growth and field emission of hierarchical single-crystalline wurtzite AIN nanoarchitectures. Advanced Materials, 17, pp. 110–114.CrossRefGoogle Scholar
  60. Yin, L. W., Bando, Y., Zhu, Y. C., Li, M. S., Tang, C. C. and Golberg, D. 2005b, Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Advanced Materials, 17, pp. 213–217.CrossRefGoogle Scholar
  61. Youngman, R. A. and Harris, J. H. 1990, Luminescence studies of oxygen-related defects in aluminum nitride. Journal of American Ceramic Society, 73, pp. 3238–3246.CrossRefGoogle Scholar
  62. Zhang, J. and Zhang, L. 2002, Intensive green light emission from MgO nanobelts, Chemical Physics Letters, 363, pp. 293–297.CrossRefGoogle Scholar
  63. Zhang, Q., Chen, G., Wu, G., Xiu, Z. and Luan, B. 2003, Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Materials Letters, 57, pp. 1453–1458.CrossRefGoogle Scholar
  64. Zhang, Q., Wu, G., Sun D. and Luan, B. 2002, Study on the thermal expansion and thermal cycling of AlNp/Al composites. Journal of Materials Science & Technology, 57, pp. 63–65.Google Scholar
  65. Zhang, Y. J., Liu, J., He, R. R., Zhang, Q., Zhang, X. Z. and Zhu, J. 2001, Synthesis of aluminum nitride nanowires from carbon nanotubes. Chemistry of Materials, 13, pp. 3899–3905.CrossRefGoogle Scholar
  66. Zhao, Q., Zhang, H., Xu, X., Wang, Z., Xu, J., Yu, D., Li, G. and Su, F. 2005, Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate, Applied Physics Letters, 86, p. 193101.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yong-Bing Tang
  • Dai-Ming Tang
  • Chang Liu
  • Hong-Tao Cong
    • 1
  • Hui-Ming Cheng
    • 1
  1. 1.Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesChina

Personalised recommendations