Skip to main content

On the Development of a Low-Cost Compact Planar Integrated-Circuit Sampling Receiver for UWB Sytems

  • Chapter
Ultra-Wideband Short-Pulse Electromagnetics 8

Ultra-wideband (UWB) impulse radar and communication systems, which employ video (baseband) pulse as the transmitting signal [1]-[9], are attractive for various applications, such as pavement assessment, bridge-deck inspection, geophysical explorations, collision avoidance, fluid level sensing, detection and classification of unexploded ordnance (UXO) and land-mines, and short-range in-building communications, e.g. [10], [11]

Sampling receivers are a critical part in these UWB systems. For instance, in UWB impulse radars, such as subsurface penetrating radar, sub-sampling of the received signal by a sampling receiver is needed to extract detected information. Synchronous sampling (or equivalent-time sampling) receiver is commonly used in UWB systems due to its simple and compact structure. The synchronous sampling method has been widely used in electro-optic sampling technique to down-convert RF signal or reproduce fast transient signals on a large time scale [12]. Another application of samling receivers are for microwave instrumentation such as network analyzers, frequency counters and digitizing oscilloscopes [13]-[19]. In this application, the sampling mixer is used for sub-sampling of a fast transient signal to recover it on a large time scale and for down-conversion of a continuous-wave signal. Solid-state millimeter-wave and electro-optic samplers, which are able to sub-sample picosecond transient signals, have been developed for instruments operating in the millimeter-wave band [20]-[24]. The sampling receivers for UWB applications particularly require low conversion loss and high dynamic range because of their direct conversion operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. J. S. Lee and C. Nguyen, “A low-cost uniplanar sampling down-converter with internal local oscillator, pulse generator, and IF amplifier,” IEEE Trans. Microwave Theory and Techn., vol. 49, no. 2, pp. 390-392, Feb. 2001.

    Article  ADS  Google Scholar 

  2. J. S. Lee, C. Nguyen and T. Scullion, “Impulse ground penetrating radar for nondestructive evaluation of pavements,” in 2002 IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1361-1363.

    Google Scholar 

  3. S. Abuasaker and G. Kompa, “A high sensitive receiver for baseband pulse microwave radar sensor using hybrid technology,” in 2002 Proc. IEEE Radar Conference, 2002, pp. 121-124.

    Google Scholar 

  4. J. D. Taylor and E. C. Kisenwether. “Ultra-wideband radar receivers,” in Introduction to Ultra-Wideband Radar Systems, J. D. Taylor, Ed. Boca Raton, FL: CRC Press, 1995, Chapter 10, pp. 491-577.

    Google Scholar 

  5. D. J. Daniels, Surface-Penetrating Radar. London, U.K.: IEE, 1996, Chapter 5, pp. 104-119.

    Google Scholar 

  6. S. Azevedo and T. E. McEwan, “Micropower impulse radar,” Science & Tech. Review, pp. 17-29, Jan./Feb. 1996.

    Google Scholar 

  7. D. M. Akos and J. B. Y. Tsui, “Design and implementation of a direct digitization GPS receiver front end,” IEEE Trans. Microwave Theory and Techn., vol. 44, no. 12, pp. 2334-2339, Dec. 1996.

    Article  ADS  Google Scholar 

  8. A. Pärssinen, R. Magoon, S. I. Long, and V. Porra, “A 2-GHz subharmonic sampler for signal downconversion,” IEEE Trans. Microwave Theory and Techn., vol. 45, no. 12, pp. 2344-2351, Dec. 1997.

    Article  ADS  Google Scholar 

  9. J. Han and C. Nguyen, “Integrated balanced sampling circuit for ultra-wideband communications and radar systems,” IEEE Microwave Wireless Compon. Lett., vol. 14, no. 10, pp. 460-462, Oct. 2004.

    Article  Google Scholar 

  10. R. J. Fontana. (2000, May). “Recent applications of ultra wideband radar and communications systems,” in Ultra-Wideband, Short-Pulse Electromagnetics 5, P. D. Smith and S. R. Cloude, Ed. New York: Kluwer Academic/Plenum Publishers, 2002, pp. 225-234.

    Chapter  Google Scholar 

  11. Time Domain Corp., AL. PulsON Technology: Time modulated ultra-wideband for wireless applications.[Online].Available:http://www.timedomain.com/Files/downloads/techpapers/PulsONoverview.pdf.

  12. M. Kamegawa, K. Giboney, J. Karin, S. Allen, M. Case, R. Yu, M. J. W. Rodwell, and J. E. Bowers, “Picosecond GaAs monolithic optoelectronic sampling circuit,” IEEE Photonics Tech. Lett., vol. 3, no. 6, Jun. 1991, pp. 567-569.

    Article  ADS  Google Scholar 

  13. W. M. Grove, “Sampling for oscilloscopes and other RF systems: DC through X-band,” IEEE Trans. Microwave Theory and Techn., vol. MTT-14, no. 12, pp. 629-635, Dec. 1966.

    Article  Google Scholar 

  14. J. Merkelo and R.D. Hall, “Broad-band thin-film signal sampler,” IEEE J. Solid-State Circuits, vol. SC-7, no. 1, pp. 50-54, Feb. 1972.

    Article  Google Scholar 

  15. A. Bologlu, “A 26.5-GHz automatic frequency counter with enhanced dynamic range,” Hewlett-Packard J., pp. 20-22, Apr. 1980.

    Google Scholar 

  16. B. E. Gilchrist, R. D. Fildes, and J. G. Galli, “The use of sampling techniques for miniaturized microwave synthesis applications,” in 1982 IEEE MTT-S Int. Microwave Symp. Dig., 1982, pp. 431-433.

    Google Scholar 

  17. S. E. Moore, B. E. Gilchrist, and J. G. Galli, “Microwave sampling effective for ultrabroadband frequency conversion,” MSN & CT, pp. 113-126, Feb. 1986.

    Google Scholar 

  18. S. R. Gibson, “Gallium arsenide lowers cost and improves performance of microwave counters,” Hewlett-Packard J., pp. 4-10, Feb. 1986.

    Google Scholar 

  19. K. Madani and C. S. Aitchison, “A 20 GHz microwave sampler,” IEEE Trans. Microwave Theory and Techn., vol. 40, no. 10, pp. 1960-1963, Oct. 1992.

    Article  ADS  Google Scholar 

  20. R. A. Marsland, V. Valdivia, C. J. Madden, M. J. W. Rodwell, and D. M. Bloom, “130 GHz GaAs monolithic integrated circuit sampling head,” Appl. Phys. Lett., vol. 55, no. 6, pp. 592-594, Aug. 1989.

    Article  ADS  Google Scholar 

  21. M. S. Shakouri, A. Black, B. A. Auld, and D. M. Bloom, “500 GHz GaAs MMIC sampling wafer probe,” Electron. Lett., vol. 29, no. 6, pp. 557-558, Mar. 1993.

    Article  ADS  Google Scholar 

  22. K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, “Picosecond optical sampling of GaAs integrated circuits,” IEEE J. Quantum Electron., vol. 24, no. 2, pp. 198-220, Feb. 1988.

    Article  ADS  Google Scholar 

  23. M. J. W. Rodwell, M. kamegawa, R. Yu, M. Case, E. Carman, and K. S. Giboney, “GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling,” IEEE Trans. Microwave Theory and Techn., vol. 39, no. 7, pp. 1194-1204, Jul. 1991.

    Article  ADS  Google Scholar 

  24. Y. Konishi, M. Kamegawa, M. Case, R. Yu, S. T. Allen, and M. J. W. Rodwell, “A broadband free-space millimeter-wave vector transmission measurement system,” IEEE Trans. Microwave Theory and Techn., vol. 42, no. 7, pp. 1131-1139, Jul. 1994.

    Article  ADS  Google Scholar 

  25. J.W. Han and C. Nguyen, “Coupled-Slotline-Hybrid Sampling Mixer Integrated with Step-Recovery-Diode Pulse Generator for UWB Applications,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-53, no. 6, June 2005, pp. 1875-1882.

    Article  ADS  Google Scholar 

  26. J.W. Han, R. Xu and C. Nguyen, “Development of a Low-Cost, Compact Planar Synchronous Receiver for UWB Systems,” IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, Albuquerque, New Mexico, July 9-14, 2006

    Google Scholar 

  27. S. Hamilton and R. Hall, “Shunt-mode harmonic generation using step recovery diodes,” Microwave Journal, pp. 69-78, Apr. 1967.

    Google Scholar 

  28. J. Han and C. Nguyen, “A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing,” IEEE Microwave Wireless Compon. Lett., vol. 12, no. 6, pp. 206-208, Jun. 2002.

    Article  Google Scholar 

  29. W. M. Grove, “Sampling for oscilloscopes and other RF systems: DC through X-band,” IEEE Trans. Microwave Theory and Techn., vol. MTT-14, no. 12, pp. 629-635, Dec. 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, J., Xu, R., Nguyen, C. (2007). On the Development of a Low-Cost Compact Planar Integrated-Circuit Sampling Receiver for UWB Sytems. In: Baum, C.E., Stone, A.P., Tyo, J.S. (eds) Ultra-Wideband Short-Pulse Electromagnetics 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73046-2_22

Download citation

Publish with us

Policies and ethics