Skip to main content

Active and Passive Acoustics to Locate and Study Fish

  • Chapter
Fish Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 32))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez A, Ye Z (1999) Effects of fish school structures on acoustic scattering. ICES J Mar Sci 56:361–369.

    Google Scholar 

  • Anderson VC (1950) Sound scattering from a fluid sphere. J Acoust Soc Am 22:426–431.

    Google Scholar 

  • Andreeva IB (1964) Scattering of sound by air bladders of fish in deep sound scattering ocean layers. Sov Phys-Acoust 10:17–21.

    Google Scholar 

  • Balls R (1948) Herring fishing with the echometer. J Cons Int Explor Mer 15:193–206.

    Google Scholar 

  • Barr R (2001) A design study of an acoustic system suitable for differentiating between orange roughy and other New Zealand deep-water species. J Acoust Soc Am 109:164–178.

    Google Scholar 

  • Bass AH, Clark CW (2003) The physical acoustics of underwater sound communication. In: Simmons AM, Popper AN, Fay RR (eds) Acoustic Communication. New York: Springer-Verlag, pp. 15–64.

    Google Scholar 

  • Brawn VM (1961) Sound production by the cod (Gadus callarias L). Behaviour 18:239–255.

    Google Scholar 

  • Breder CM (1967) Seasonal and diurnal occurrences of fish sounds in a small Florida Bay. Bull Am Mus Nat Hist 138:329–278.

    Google Scholar 

  • Butler JL, Pearcy WG (1972) Swimbladder morphology and specific gravity of myctophids off Oregon. J Fish Res B Can 29:1145–1150.

    Google Scholar 

  • Chu D, Stanton TK (1998) Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton. J Acoust Soc Am 104:39–55.

    Google Scholar 

  • Chu D, Wiebe P, Copley N (2000) Inference of material properties of zooplankton from acoustic and resistivity measurements. ICES J Mar Sci 57:1128–1142.

    Google Scholar 

  • Clay CS, Heist BG (1984) Acoustic scattering by fish- acoustic models and a 2–parameter fit. J Acoust Soc Am 75:1077–1083.

    Google Scholar 

  • Clay CS, Horne JK (1994) Acoustic models of fish: the Atlantic cod (Gadus morhua). J Acoust Soc Am 96:1661–1668.

    Google Scholar 

  • Cochrane NA, Sameoto D, Herman AW, Neilson J (1991) Multiple-frequency acoustic backscattering and zooplankton aggregations in the inner Scotian shelf basins. Can J Fish Aquat Sci 48:340–355.

    Google Scholar 

  • Cochrane NA, Li Y, Melvin GD (2003) Extraction of calibrated volume backscattering strength from multi-beam sonar.ICES J Mar Sci 60:669–677.

    Google Scholar 

  • Connaughton MA, Taylor MH (1995) Seasonal and daily cycles in sound production associated with spawning in weakfish, Cynoscion regalis. Environ Biol Fish 42:233–240.

    Google Scholar 

  • Coombs RF, Barr R (2004) Acoustic remote sensing of swimbladder orientation and species mix in the oreo population on the Chatham Rise. J Acoust Soc Am 115:1516–1524.

    PubMed  Google Scholar 

  • Doonan IJ, Bull B, Coombs RF (2003) Star acoustic surveys of localized fish aggregations. ICES J Mar Sci 60:132–146.

    Google Scholar 

  • Dragesund O, Olsen S (1965) On the possibility of estimating year-class strength by measuring echo-abundance of 0–group fish. Fiskeridir Skr Ser Havunders 13:47–75.

    Google Scholar 

  • Fernandes PG, Brierley A, Simmonds EJ, Millard NW, McPhail SD, Armstrong F, Stevenson P, Squires M (2000) Fish do not avoid survey vessels. Nature 404:35–36.

    PubMed  CAS  Google Scholar 

  • Feuillade C, Werby MF (1994) Resonances of deformed gas bubbles in liquids. J Acoust Soc Am 96:3684–3692.

    Google Scholar 

  • Fine ML, Lenhardt ML (1983) Shallow-water propagation of the toadfish mating call. Comp Biochem Physiol 76A:225–231.

    Google Scholar 

  • Finstad JL, Nordeide JT (2004) Acoustic repertoire of spawning cod, Gadus morhua. Environ Biol Fish 70:427–433.

    Google Scholar 

  • Fish MP, Mowbray WH (1970) Sounds of Western North Atlantic fishes. A Reference File of Biological Underwater Sounds. Baltimore: The John Hopkins University Press.

    Google Scholar 

  • Foote KG (1980a) Importance of the swimbladder in acoustic scattering by fish: a comparison of gadoid and mackerel target strengths. J Acoust Soc Am 67:2084–2089.

    Google Scholar 

  • Foote KG (1980b) Effect of fish behaviour on echo energy: the need for measurement of orientation distributions. J Cons Int Explor Mer 39:193–201.

    Google Scholar 

  • Foote KG (1980c) Averaging of fish target strength functions. J Acoust Soc Am 67:504–515.

    Google Scholar 

  • Foote KG (1982) Optimizing copper spheres for precision calibration of hydroacoustic equipment. J Acoust Soc Am 71:742–747.

    Google Scholar 

  • Foote KG (1983) Linearity of fisheries acoustics, with addition theorems. J Acoust Soc Am 73:1932–1940.

    Google Scholar 

  • Foote KG (1985) Rather-high-frequency sound scattering by swimbladdered fish. J Acoust Soc Am 78:688–700.

    Google Scholar 

  • Foote KG (1991) Summary of methods for determining fish target strength at ultrasonic frequencies. J Cons Int Explor Mer 48:211–217.

    Google Scholar 

  • Foote KG, Ona E (1987) Tilt angles of schooling penned saithe. J Cons Int Explor Mer 43:118–121.

    Google Scholar 

  • Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Simmonds EJ (1987) Calibration of acoustic instruments for fish density estimation: a practical guide ICES Coop Res Rep 44.

    Google Scholar 

  • Foote KG, Chu D, Hammar TR, Baldwin KC, Mayer LA, Hufnagle, LC Jr, Jech JM (2005) Protocols for calibrating multibeam sonar. J Acoust Soc Am 117:2013–2027.

    PubMed  Google Scholar 

  • Furusawa M, Ishii K, Miynohana Y (1992) Attenuation of sound by schooling fish. J Acoust Soc Am 92:987–994.

    PubMed  CAS  Google Scholar 

  • Gauthier S, Rose GA (2002) In situ target strength studies on Atlantic redfish (Sebastes spp). ICES J Mar Sci 59:805–815.

    Google Scholar 

  • Gee JH (1968) Adjustment of buoyancy by longnose dace (Rhinichthys cataractae) in relation to velocity of water. J Fish Res B Can 25:1485–1496.

    Google Scholar 

  • Gerlotto F, Paramo J (2003) The three dimensional morphology and internal structure of Clupeid schools as observed using vertical scanning multibeam sonar.Aquatic Living Resources 16:113–122.

    Google Scholar 

  • Gilmore RG (2003) Sound production and communication in the spotted seatrout. In: Bortone SA (ed) Biology of the Spotted Seatrout. New York: CRC Marine Biology Series, pp. 177–195.

    Google Scholar 

  • Gorska N, Ona E (2003) Modelling the effect of swimbladder compression on the acoustic backscattering from herring at normal or near-normal dorsal incidences. ICES J Mar Sci 60:1381–1391.

    Google Scholar 

  • Haslett RWG (1962) Determination of the acoustic scatter patterns and cross sections of fish models and ellipsoids. Br J Appl Phys 13:611–620.

    Google Scholar 

  • Haslett RWG (1965) Acoustic backscattering cross sections of fish at three frequencies and their representation on a universal graph. Br J Appl Phys 16:1143–1150.

    Google Scholar 

  • Hawkins AD, Amorim MCP (2000) Spawning sounds of the male haddock, Melanogrammus aeglefinus. Environ Biol Fish 59:29–41.

    Google Scholar 

  • Hawkins AD, Rasmussen KJ (1978) The calls of gadoid fish. J Mar Biol Assoc UK 58:891–911.

    Google Scholar 

  • Hawkins AD, Casaretto L, Picciulin M, Olsen K (2002) Locating spawning haddock by means of sound. Bioacoustics 12:284–285.

    Google Scholar 

  • Hayashi K, Takagi T (1980) Occurrence of unusually high levels of wax esters in deep-sea teleost fish muscle, Hoplostethus atlanticus. Bull Jpn Soc Sci Fish 46:459–463.

    CAS  Google Scholar 

  • Holliday DV (1972) Resonance structure in echoes from schooled pelagic fish. J Acoust Soc Am 51:1322–1333.

    Google Scholar 

  • Holliday DV (1977) Extracting bio-physical information from the acoustic signature of marine organisms. In: Anderson NR, Zahuranec BJ (eds) Oceanic Sound Scattering Prediction. New York: Plenum Press.

    Google Scholar 

  • Holliday DV (1980) Use of acoustic frequency diversity for marine biological measurements. In: Diemer FP, Vernberg FJ, Mirkes DZ (eds) Advanced Concepts in Ocean Measurements for Marine Biology. BW Baruch Library in Marine Science no. 10, pp. 423–460.

    Google Scholar 

  • Horne JK, Clay CS (1998) Sonar systems and aquatic organisms: matching equipment and model parameters. Can J Fish Aquat Sci 55:1296–1306.

    Google Scholar 

  • Horne JK, Jech JM (1999) Multi-frequency estimates of fish abundance: constraints of rather high frequencies. ICES J Mar Sci 56:184–199.

    Google Scholar 

  • Horne JK, Walline PD, Jech JM (2000) Comparing acoustic model predictions to in situ backscatter measurements of fish with dual-chambered swimbladders. J Fish Biol 57:1105–1121.

    Google Scholar 

  • Huang K, Clay CS (1980) Backscattering cross-sections of live fish: PDF and aspect. J Acoust Soc Am 67:795–802.

    Google Scholar 

  • Jech JM, Horne JK (2001) Effects of in situ target spatial distributions on acoustic density estimates. ICES J Mar Sci 58:123–136.

    Google Scholar 

  • Jech JM, Horne JK (2002) Three-dimensional visualization of fish morphometry and acoustic backscatter. Acoust Res Lett Online 3:35–40. http://wwwojpsaiporg/ARLO.

    Google Scholar 

  • Jech JM, Schael DM, Clay CS (1995) Application of three sound scattering models to threadfin shad (Dorosoma petenense). J Acoust Soc Am 98:2262–2269.

    Google Scholar 

  • Johannesson KA, Mitson RA (1983) Fisheries acoustics. FAO Fisheries Technical Paper 240:1–249.

    Google Scholar 

  • Johnson RK (1977) Acoustic estimation of scattering-layer composition. J Acoust Soc Am 61:1636–1639.

    Google Scholar 

  • Jones FRH, Marshall NB (1953) The structure and function of the teleostean swimbladder. Biol Rev 28:16–83.

    Google Scholar 

  • Kalish JH, Greenlaw CF, Pearcy WG, Holliday DV (1986) The biological and acoustical structure of sound scattering layers off Oregon. Deep-Sea Res 33:631–653.

    Google Scholar 

  • Kimura K (1929) On the detection of fish-groups by an acoustic method. J Imp Fish Inst Tokyo 24:41–45.

    Google Scholar 

  • Kloser RJ, Ryan T, Sakov P, Williams A, Koslow JA (2002) Species identification in deep water using multiple acoustic frequencies. Can J Fish Aquat Sci 59:1065–1077.

    Google Scholar 

  • Kloser RK, Horne JK (2003) Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES J Mar Res 60:516–523.

    Google Scholar 

  • Korneliussen RJ, Ona E (2003) Synthetic echograms generated from the relative frequency response. ICES J Mar Sci 60:636–640.

    Google Scholar 

  • Koslow AJ, Kloser R, Stanley CA (1995) Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep-Sea Res (Pt 1) 42:233–244.

    Google Scholar 

  • Lobel PS, Mann DA (1995) Spawning sounds of the domino damselfish, Dascyllus albisella (Pomacentridae), and the relationship to male size. Bioacoustics 6:187–198.

    Google Scholar 

  • Locascio JV, Mann DA (2005) Effects of Hurricane Charley on fish chorusing. Biol. Lett. 1: 362–365.

    PubMed  Google Scholar 

  • Love RH (1971) Measurements of fish target strength: a review. Fish Bull 69:703–715.

    Google Scholar 

  • Love RH (1978) Resonant scattering by swimbladder bearing fish. J Acoust Soc Am 64:571–580.

    Google Scholar 

  • Luczkovich JJ, Sprague MW, Johnson SE, Pullinger RC (1999a) Delimiting spawning areas of weakfish, Cynoscion regalis (family Sciaenidae), in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10:143–160.

    Google Scholar 

  • Luczkovich JJ, Daniel HJ III, Sprague MW, Johnson SE, Pullinger RC, Jenkins T, Hutchinson M (1999b) Characterization of critical spawning habitats of weakfish, spotted seatrout and red drum in Pamlico Sound using hydrophone surveys. North Carolina Dept of Environ and Nat Resour, Div Mar Fish, Morehead City, NC.

    Google Scholar 

  • Luh HK, Mok HK (1986) Sound production in the domino damselfish Dascyllus trimaculatus (Pomacentridae) under laboratory conditions. Jpn J Ichthyol 33: 70–74.

    Google Scholar 

  • MacLennan DN, Holliday DV (1996) Fisheries and plankton acoustics: past present, and future. ICES J Mar Sci 53:513–516.

    Google Scholar 

  • MacLennan DN, Simmonds EJ (1992) Fisheries Acoustics. London: Chapman and Hall.

    Google Scholar 

  • MacLennan DN, Fernandes PG, Dalen J (2002) A consistent approach to definitions and symbols in fisheries acoustics. ICES J Mar Sci 59: 365–369.

    Google Scholar 

  • Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW (2006) Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311:660–663.

    PubMed  Google Scholar 

  • Mann DA, Jarvis SM (2004) Potential sound production by a deep-sea fish. J Acoust Soc Am 115:2331–2333.

    PubMed  Google Scholar 

  • Mann DA, Lobel PS (1995) Passive acoustic detection of sounds produced by the damselfish, Dascyllus albisella (Pomacentridae). Bioacoustics 6:199–213.

    Google Scholar 

  • Mann DA, Lobel PS (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791.

    Google Scholar 

  • Mann DA, Bowers-Altman J, Rountree RA (1997) Sounds produced by the striped cusk eel, Ophidion marginatum, during courtship and spawning. Copeia 610–612.

    Google Scholar 

  • Mayer L, Li Y, Melvin G (2002) 3D visualization for pelagic fisheries research and assessment. ICES J Mar Sci 59:216–225.

    Google Scholar 

  • McClatchie S, Ye Z (2000) Target strength of an oily deep-water fish, orange roughy (Hoplostethus atlanticus) II. Modeling. J Acoust Soc Am 107:1280–1285.

    PubMed  CAS  Google Scholar 

  • McClatchie S, Alsop J, Coombs RF (1996) A re-evaluation of relationships between fish size, acoustic frequency, and target strength. ICES J Mar Sci 53:780–791.

    Google Scholar 

  • McKelvey DR (2000) The use of two frequencies to interpret acoustic scattering layers. MS Thesis, University of Washington, Seattle, WA.

    Google Scholar 

  • McNaught DC (1969) Developments in acoustic plankton sampling. In: Proceedings of the 12th Conference on Great Lakes Research, Ann Arbor, Michigan, USA: 61–68.

    Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of Acoustical Oceanography. New York: Academic Press.

    Google Scholar 

  • Miyanohana Y, Ishii K, Furusawa M (1990) Measurements and analyses of dorsal-aspect target strength of six species of fish at four frequencies. Rapp P-V Réun Cons Int Explor Mer 189:317–324.

    Google Scholar 

  • Mok HK, Gilmore RG (1983) Analysis of sound production in estuarine spawning aggregations of Pogonia cromis, Bairdiella chrysoura, and Cynoscion nebulosus (Sciaenidae). Bull Acad Zool Acad Sinica 22:157–186.

    Google Scholar 

  • Mukai T, Iida K (1996) Depth dependence of target strength of live kokanee salmon in accordance with Boyle’s Law. ICES J Mar Sci 53:245–248.

    Google Scholar 

  • Myrberg AA Jr (1972) Ethology of the bicolor damselfish, Eupomacentrus partitus (Pisces:Pomacentridae): a comparative analysis of laboratory and field behavior. Anim Behav Mon 5:197–283.

    Google Scholar 

  • Neighbors MA (1992) Occurrence of inflated swimbladders in five species of lanternfishes (family Myctophidae) from waters off southern California. Mar Biol 114:355–363.

    Google Scholar 

  • Nero RW, Thompson CH, Jech JM (2004) In situ acoustic estimates of the swimbladder volume of Atlantic herring (Clupea harengus). ICES J Mar Sci 61:323–337.

    Google Scholar 

  • Nordeide JT, Kjellsby E (1999) Sound from spawning cod at their spawning grounds. ICES J Mar Sci 56:326–332.

    Google Scholar 

  • Ona E (1990) Physiological factors causing natural variations in acoustic target strength of fish. J Mar Biol Assoc UK 70:107–127.

    Google Scholar 

  • Ona E, Mitson R (1996) Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J Mar Sci 53:677–690.

    Google Scholar 

  • Petitgas P (1993) Geostatistics for fish stock assessments: a review and an acoustic application. ICES J Mar Sci 50:285–298.

    Google Scholar 

  • Pitcher TJ, Parish JK (1993) Functions of shoaling behaviour in teleosts. In: Pitcher TJ (ed) Behaviour of Teleost Fishes. London: Chapman & Hall, pp. 363–439.

    Google Scholar 

  • Rallier du Baty R (1927) La pêche sur le banc de Terre-Neuve et autour del îles. Saint-Pierre et Miquelon Office Scientifique et Technique des Pêches Maritimes Mémoires (Série Spécial), 7.

    Google Scholar 

  • Ranta E, Lindström K, Peuhkuri N (1992) Size matters when three-spined sticklebacks go to school. Anim Behav 43:160–162.

    Google Scholar 

  • Reeder DB, Jech JM, Stanton TK (2004) Broadband acoustic backscatter and high-resolution morphology of fish: measurement and modeling. J Acoust Soc Am 116:729–746.

    Google Scholar 

  • Saetersdal G, Stromme T, Bakken B, Piekutowski L (1984) Some observations on frequency-dependent backscattering strength. FAO Fish Rep 300:150–156.

    Google Scholar 

  • Sand O, Hawkins AD (1973) Acoustic properties of the cod swimbladder. J Exp Biol 58:797–820.

    Google Scholar 

  • Saucier MH, Baltz DM (1993) Spawning site selection by spotted seatrout, Cynoscion nebulosus, and black drum, Pogonias cromis, in Louisiana. Environ Biol Fishes 36: {257–272}.

    Google Scholar 

  • Saucier MH, Baltz DM, Roumillat WA (1992) Hydrophone identification of spawning sites of spotted seatrout Cynoscion nebulosus (Osteichthys: Sciaenidae) near Charleston, South Carolina. NE Gulf Sci 12:141–145.

    Google Scholar 

  • Simmonds EJ, Armstrong F (1990) A wideband echo sounder:measurements on cod, saithe and herring, and mackerel from 27 to 54 kHz. Rapp P-V Réun Cons Int Explor Mer 189:381–387.

    Google Scholar 

  • Spanier E (1970) Analysis of sounds and associated behavior of the domino damselfish Dascyllus trimaculatus (Ruppell, 1828) (Pomacentridae). MSc Thesis, Tel-Aviv University, Tel-Aviv.

    Google Scholar 

  • Spanier E (1979) Aspects of species recognition by sound in four species of damselfishes, genus Eupomacentrus (Pisces: Pomacentridae). Z Tierpsychol 51:301–316.

    PubMed  CAS  Google Scholar 

  • Sprague M, Luczkovich J (2004) Measurement of an individual silver perch Bairdiella chrysoura sound pressure level in a field recording. J Acoust Soc Am 116:3186–3191.

    PubMed  Google Scholar 

  • Stanton TK (1989) Sound scattering by cylinders of finite length. III. Deformed cylinders. J Acoust Soc Am 86:691–705.

    Google Scholar 

  • Stanton TK, Reeder DB, Jech JM (2003) Inferring fish orientation from broadband-acoustic echoes. ICES J Mar Sci 60:524–531.

    Google Scholar 

  • Sund O (1935) Echo sounding in fishery research. Nature 135:953.

    Google Scholar 

  • Tavolga WN (1977) Mechanism for directional hearing in the sea catfish (Arius felis). J Exp Biol 67:97–115.

    PubMed  CAS  Google Scholar 

  • Tiffan KF, Rondorf DW, Skalicky JJ (2004) Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar. N Am J Fish Manag 24:1421–1426.

    Google Scholar 

  • Toresen R (1991) Absorption of acoustic energy in dense herring schools studied by the attenuation in the bottom echo signal. Fish Res 10:317–327.

    Google Scholar 

  • Towler RH, Jech JM, Horne JK (2003) Visualizing fish movement, behavior, and acoustic backscatter. Aquat Liv Res 16:277–282.

    Google Scholar 

  • Trout GC, Lee AJ, Richardson ID, Harden Jones RR (1952) Recent echosounder studies. Nature 170:71–72.

    Google Scholar 

  • Urick RJ (1983) Principles of Underwater Sound. New York: McGraw-Hill.

    Google Scholar 

  • Wenz GM (1962) Acoustic ambient noise in the ocean: spectra and sources. J Acoust Soc Am 34:1936–1956.

    Google Scholar 

  • Weston DE (1967) Sound propagation in the presence of bladder fish. In Albers VM (ed) Underwater Acoustics. New York: Plenum Press, pp. 55–88.

    Google Scholar 

  • Whitehead PJP, Blaxter JHS (1964) Swimbladder form in clupeoid fishes. Zool J Linn Soc 97:299–372.

    Google Scholar 

  • Winn HE (1964) The biological significance of fish sounds. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford: Pergamon Press, pp. 213–231.

    Google Scholar 

  • Zakharia ME, Magand F, Hetroit F, Diner N (1996) Wideband sounder for fish species identification at sea. ICES J Mar Sci 53:203–209.

    Google Scholar 

  • Zhao X, Ona E (2003) Estimation and compensation models for the shadowing effect in dense fish aggregations. ICES J Mar Sci 60:155–163.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mann, D.A., Hawkins, A.D., Jech, J.M. (2008). Active and Passive Acoustics to Locate and Study Fish. In: Webb, J.F., Fay, R.R., Popper, A.N. (eds) Fish Bioacoustics. Springer Handbook of Auditory Research, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73029-5_9

Download citation

Publish with us

Policies and ethics