Orientation to Auditory and Lateral Line Stimuli

  • Olav Sand
  • Horst Bleckmann
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 32)


Hair Cell Lateral Line Sound Source Otolith Organ Lateral Line System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory performance of blind Mexican cavefish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239.PubMedGoogle Scholar
  2. Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167:347–356.Google Scholar
  3. Behrend O, Branoner F, Zhivkov Z, Ziem U (2006) Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis. Eur J Neurosci 23:729–744PubMedGoogle Scholar
  4. Blaxter JHS, Gray JAB, Denton EJ (1981) Sound and startle responses in herring shoals. J Mar Biol Assoc UK 61:851–869.Google Scholar
  5. Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 140:163–172.Google Scholar
  6. Bleckmann H (1982) Reaction time, threshold values and localization of prey in stationary and swimming surface feeding fish Aplocheilus lineatus (Cyprinodontidae). Zool Jahrb Abt Physiol 86:71–81.Google Scholar
  7. Bleckmann H (1985) Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton (Pisauridae). In: Kalmring K, Elsner N (eds) Acoustic and Vibrational Communication in Insects. Berlin: Paul Parey, pp. 215–222.Google Scholar
  8. Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 619–641.Google Scholar
  9. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in Zoology, Vol 41. Stuttgart: Gustav Fischer, pp. 1–115.Google Scholar
  10. Bleckmann H, Schwartz E (1981) Reaction time of the topminnow Aplocheilus lineatus to surface waves determined by video- and electromyogram recordings. Experientia 37:362–363.PubMedGoogle Scholar
  11. Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 145:331–339.Google Scholar
  12. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128.Google Scholar
  13. Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.Google Scholar
  14. Bleckmann H, Breihaupt T, Blickman R, Tautz J (1991) The time course and frequency content of local flow fields caused by moving fish, frog and crayfish. J Comp Physiol A 168:749–757.PubMedGoogle Scholar
  15. Buwalda RJA (1981) Segregation of directional and nondirectional acoustic information in the cod. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 139–172.Google Scholar
  16. Buwalda RJA, van der Steen J (1979) The sensitivity of the cod sacculus to directional and non-directional stimuli. Comp Biochem Physiol A 64:467–471.Google Scholar
  17. Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sound from opposing directions. J Comp Physiol A 150:175–184.Google Scholar
  18. Canfield JG, Rose GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape responses in goldfish (Carassuis auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.PubMedGoogle Scholar
  19. Casagrand JL, Guzik AL, Eaton RC (1999) Mauthner and reticulospinal responses to onset of acoustic pressure and acceleration stimuli. J Neurophysiol 82:1422–1437.PubMedGoogle Scholar
  20. Chapman CJ (1973) Field studies of hearing in teleost fish. Helgoländer wiss Meeresunters 24:371–390.Google Scholar
  21. Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol 85:147–167.Google Scholar
  22. Chapman CJ, Johnstone ADF (1974) Some auditory discrimination experiments on marine fish. J Exp Biol 61:521–528.PubMedGoogle Scholar
  23. Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comp Biochem Physiol A 47:371–385.PubMedGoogle Scholar
  24. Chiszar, David, Ted Melcer, Robert Lee and David Duvall (1990) Chemical cues used by prairie rattlesnakes (Crotalus viridis) to follow trails of rodent prey. J Chem Ecol 16: 79–86.Google Scholar
  25. Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer-Verlag, pp. 409–419.Google Scholar
  26. Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin Cottus bairdi. J Exp Biol 190:109–129.PubMedGoogle Scholar
  27. Coombs S, Conley RA (1995) Source distance determination by the mottled sculpin lateral line. In: Burrows M, Mattheson T, Newland PL, Schuppe H (eds) Nervous Systems and Behaviour. Stuttgart: Thieme Verlag, pp. 349.Google Scholar
  28. Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567.PubMedGoogle Scholar
  29. Coombs S, Montgomery JC (1998) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 319–362.Google Scholar
  30. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371.PubMedGoogle Scholar
  31. Coombs S, Finneran JJ, Conley RA (2000) Hydrodynamic imaging formation by the lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi. Philos Trans Roy Soc B 355:1111–1114.Google Scholar
  32. Curcic-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209: 1548–1559.PubMedGoogle Scholar
  33. de Munck JC, Schellart NAM (1987) A model for the nearfield acoustics of the fish swimbladder and its relevance for directional hearing. J Acoust Soc Am 81:556–560.PubMedGoogle Scholar
  34. De Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cavefish, Astyanax fasciatus. Anim Behav 68:291–295.Google Scholar
  35. de Vries H (1950) The mechanics of the labyrinth otoliths. Acta Oto-Laryngol 38:262–273.Google Scholar
  36. Dijkgraaf S, Kalmijn AJ (1962) Verhaltensversuche zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften 49:400.Google Scholar
  37. Domenici P, Blake RW (1993) The kinematics and performance of fish fast-start swimming. J Exp Biol 200:1165–1178.Google Scholar
  38. Eaton RC, Emberley DS (1991) How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. J Exp Biol 161:469–487.PubMedGoogle Scholar
  39. Eaton RC, Popper AN (1995) The octavolateralis system and Mauthner cell: interactions and questions. Brain Behav Evol 46:124–130.PubMedGoogle Scholar
  40. Eaton RC, Lavender WA, Wieland CM (1981) Identification of Mauthner initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. J Comp Physiol A 144:521–531.Google Scholar
  41. Eaton RC, Canfield JG, Guzik AL (1995) Left-right discrimination of sound onset by the Mauthner system. Brain Behav Evol 46:165–179.PubMedGoogle Scholar
  42. Eaton RC, Lee RKK, Foreman MB (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63:467–485.PubMedGoogle Scholar
  43. Eaton RC, Casagrand JL, Cummins GI (2002) Neural implementation of the phase model for localizing impulse sounds by the Mathner system. Bioacoustics 12:209–212.Google Scholar
  44. Edds-Walton PL (1998) Anatomical evidence for binaural processing in the descending octaval nucleus of the toadfish (Opsanus tau). Hear Res 123:41–54.PubMedGoogle Scholar
  45. Edds-Walton PL, Fay RR (2003) Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau. J Comp Physiol A 189:527–543.Google Scholar
  46. Edds-Walton PL, Fay RR (2005a) Sharpening of directional responses along the auditory pathway of the oyster toadfish, Opsanus tau. J Comp Physiol A 191:1079–1086.Google Scholar
  47. Edds-Walton PL, Fay RR (2005b) Projections to bimodal sites in the torus semicircularis of the toadfish, Opsanus tau. Brain Behav Evol 66:73–87.Google Scholar
  48. Edds-Walton PL, Fay RR, Highstein S (1999) Dendritic arbors and central projections of physiologically characterized auditory fibers from the saccule of the toadfish, Opsanus tau. J Comp Neurol 411:212–238.PubMedGoogle Scholar
  49. Elepfandt A, Wiedemer L (1987) Lateral-line responses to water surface waves in the clawed frog, Xenopus laevis. J Comp Physiol A 160:667–682.Google Scholar
  50. Emde G von der, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894.PubMedGoogle Scholar
  51. Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology 107: 135–151.PubMedGoogle Scholar
  52. Enger PS (1976) On the orientation of hair cells in the labyrinth of perch (Perca fluviatilis). In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 49–62.Google Scholar
  53. Enger PS, Hawkins AD, Sand O, Chapman C J (1973) Directional sensitivity of saccular microphonic potentials in the haddock. J Exp Biol 59:425–434.PubMedGoogle Scholar
  54. Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral lLine—Neurobiology and Evolution. New York: Springer-Verlag, pp. 575–587.Google Scholar
  55. Faber DS, Fetcho JR, Korn H (1989) Neural networks underlying the escape response in goldfish. Ann NY Acad Sci 563:11–33.PubMedGoogle Scholar
  56. Faber DS, Korn H, Lin JW (1991) Role of medullary networks and postsynaptic membrane properties in regulating Mauthner cell responsiveness to sensory excitation. Brain Behav Evol 37:286–297.PubMedGoogle Scholar
  57. Fay, RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954.PubMedGoogle Scholar
  58. Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.PubMedGoogle Scholar
  59. Fay RR, Edds-Walton, PL (2000) Directional encoding by fish auditory systems. Philos Trans Roy Soc Lond B 355:1281–1284.Google Scholar
  60. Fay RR, Olsho LW (1979) Discharge patterns of lagenar and saccular neurons of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol A 62:377–386.Google Scholar
  61. Fetcho JR., O’Malley DM (1997) Imaging neuronal networks in behaving animals. Curr Opin Neurosci 7:832–838.Google Scholar
  62. Flock AA (1965) Electromicroscopical and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol Suppl 199:1–90.Google Scholar
  63. Forman MB, Eaton RC (1993) The direction change concept for reticulospinal control of goldfish escape. J Neurosci 13:4101–4113.Google Scholar
  64. Gathan E, Sankrithi N, Campos, JB, O’Malley DM (2002) Evidence for a widespread brain stem escape network in larval zebrafish. J Neurophysiol 87:608–614.Google Scholar
  65. Goulet J, Engelmann J, Chagnaud B, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp physical A 194:1–17.Google Scholar
  66. Guzik AL, Eaton RC, Mathis DW (1999). A connectionist model of left-right sound discrimination by the Mauthner system. J Comput Neurosci 6:121–144.PubMedGoogle Scholar
  67. Hahn G (1960) Ferntastsinn und Strömungssinn beim augenlosen Höhlenfisch Anoptichthys jordani Hubbs und Innes im Vergleich zu anderen Teleosteern. Naturwissenschaften 47:611.Google Scholar
  68. Hale M E (2002) S- and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms. J Exp Biol 205:2005–2016.PubMedGoogle Scholar
  69. Hale ME, Long Jr JH, McHenry M J, Westneat MW (2002) Evolution of behaviour and neural control of the fast-start escape response. Evolution 56:993–1007.PubMedGoogle Scholar
  70. Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596.PubMedGoogle Scholar
  71. Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200.PubMedGoogle Scholar
  72. Harris GG (1964) Considerations on the physics of sound produced by fishes. In: Tavolga WN (ed) Marine Bio-acoustics. Oxford: Pergamon Press, pp. 233–247.Google Scholar
  73. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cavefish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer-Verlag, pp. 217–228.Google Scholar
  74. Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biol Cyber 66:443–452.Google Scholar
  75. Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biol Cyber 66:453–461.Google Scholar
  76. Hassan E-S (1993) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. III. The case of an oscillating sphere near the fish. Biol Cyber 69:535–538.Google Scholar
  77. Hassan ES, Abdel-Latif H, Biebricher R (1992) Studies on the effects of $Ca++$ and $Co++$ on the swimming behavior of the blind Mexican cavefish. J Comp Physiol A 171:413–419.Google Scholar
  78. Hawkins AD, Horner K (1981) Directional characteristics of primary auditory neurons from the cod ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 311–328.Google Scholar
  79. Hawkins AD, Sand O (1977) Directional hearing in the median vertical plane by the cod. J Comp Physiol A 122:1–8.Google Scholar
  80. Hofer B (1908) Studien über die Hautsinnesorgane der Fische I. Die Funktion der Seitenorgane bei den Fischen. Ber königl Bayer biol Versuchsstation München 1:115–168.Google Scholar
  81. Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Anim Behav 32:840–851.Google Scholar
  82. Horner K, Sand O, Enger PS (1980) Binaural interaction in the cod. J Exp Biol 85:323–331.Google Scholar
  83. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.PubMedGoogle Scholar
  84. Janssen J, Corcoran J (1993) Lateral line stimuli can override vision to determine sunfish strike trajectory. J Exp Biol 176:299–305.PubMedGoogle Scholar
  85. Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229.PubMedGoogle Scholar
  86. Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918.PubMedGoogle Scholar
  87. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.Google Scholar
  88. Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line—Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–215.Google Scholar
  89. Kalmijn AJ (1997) Electric and near-field acoustic detection, a comparative study. Acta Physiol Scand 161(Suppl) 638: 25–38.Google Scholar
  90. Karlsen HE (1992a) The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J Exp Biol 171:163–172.Google Scholar
  91. Karlsen HE (1992b) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187.Google Scholar
  92. Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol. 133:249–267.Google Scholar
  93. Karlsen HE, Piddington RW, Enger PS, Sand O (2004) Infrasound initiates directional fast-start escape responses in juvenile roach (Rutilus rutilus). J Exp Biol. 207:4185–4193.PubMedGoogle Scholar
  94. Käse R, Bleckmann H (1987) Prey localization by surface wave-ray tracing—fish track bugs like oceanographers track storm. Experientia 43:290–293.PubMedGoogle Scholar
  95. Kimmel CB, Powell SL, Metcalfe, WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127.PubMedGoogle Scholar
  96. Kleerekoper H, Chagnon EC (1954) Hearing in fish with special reference to Semotilus atromaculatus. J Fish Res Bd Can 11:130–152.Google Scholar
  97. Korn H, Faber DS (1996) Escape behaviour—brainstem and spinal cord circuitry and function. Curr Opin Neurobiol 6:826–832.PubMedGoogle Scholar
  98. Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246.Google Scholar
  99. Lee RKK, Eaton RC, Zottoli SJ (1993) Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. J Comp Neurol 327:1–18.Google Scholar
  100. Lighthill J (1980) Waves in Fluids. Cambridge, UK: Cambridge University Press.Google Scholar
  101. Liu KS, Fetcho JR (1999) Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23:325–335.PubMedGoogle Scholar
  102. Lu Z, Popper AN (1998) Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hear Res 126:47–57.PubMedGoogle Scholar
  103. Lu Z, Popper AN (2001) Neural response directionality correlates of hair cell orientation in a teleost fish. J Comp Physiol A 187:453–465.PubMedGoogle Scholar
  104. Lu Z, Song J, Popper AN (1998) Encoding of acoustic directional information by saccular afferents of the sleeper goby, Dormitator latifrons. J Comp Physiol A 182:805–815.PubMedGoogle Scholar
  105. Lu Z, Xu Z, Buchser WJ (2003) Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A 189:889–905.Google Scholar
  106. Lu Z, Xu Z, Buchser WJ (2004) Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A 190:923–938.Google Scholar
  107. Ma WLD, Fay RR (2002) Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol A 188:301–313.Google Scholar
  108. McCormick CA, Hernandez DV (1996) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205.Google Scholar
  109. Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159.PubMedGoogle Scholar
  110. Mohr C, Bleckmann H (1998) Electrophysiology of the cephalic lateral line of the surface-feeding fish Aplocheilus lineatus. Comp Biochem Physiol A 119:807–815.Google Scholar
  111. Moulton JM, Dixon RH (1967) Directional hearing in fishes. In: Tacvolga WN (ed) Marine Bioacoustics, Vol 2. Oxford: Pergamon Press, pp. 187–232.Google Scholar
  112. Müller U, Schwartz E (1982) Influence of single neuromasts on prey-localizing behavior of surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 149:399–408.Google Scholar
  113. Müller HM, Fleck A, Bleckmann H (1993) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179: 455–471.Google Scholar
  114. Myrberg AA Jr, Banner A, Richaard JD (1969) Shark attraction using a video-acoustic system. Mar Biol 2:264–276.Google Scholar
  115. Myrberg AA Jr, Gordon CR, Klimley AP (1976) Attraction of free ranging sharks by low frequency sound, with comments on its biological significance. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 205–228.Google Scholar
  116. Nelson DR, Gruber SH (1963) Sharks: attraction by low-frequency sounds. Science 142:975–977.PubMedGoogle Scholar
  117. Parvulescu A (1967) The acoustics of small tanks. In: Tavolga WN (ed) Marine Bio-acoustics II. Oxford: Pergamon Press, pp. 7–14.Google Scholar
  118. Piddington RW (1972) Auditory discrimination between compressions and rarefactions by goldfish. J Exp Biol 56:403–419.PubMedGoogle Scholar
  119. Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374.PubMedGoogle Scholar
  120. Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207: 2971–2978.PubMedGoogle Scholar
  121. Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. Am Zool 22:311–328.Google Scholar
  122. Popper AN, Salmon M, Parvulescu A (1973) Sound localization by two species of Hawaiian squirrelfish, Myripristis berndti and M. argyromus. Anim Behav 21:86–97.PubMedGoogle Scholar
  123. Reinhardt F (1935) Über Richtungswahrnehmung bei Fischen, besonders bei der Elritze(Phoxinus laevis L.) und beim Zwergwels (Amiurus nebulosus Raf.). Z Vergl Physiol 22:570–603.Google Scholar
  124. Ritter DA, Bhatt DH, Fetcho JR (2001) In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J Neurosci 21:8956–8965.PubMedGoogle Scholar
  125. Rogers PH, Popper AN, Cox M, Saidel WM (1988) Prosessing of acoustic signals in the auditory system of bony fish. J Acoust Soc Am 83:338–349.PubMedGoogle Scholar
  126. Sand O (1974) Directional sensitivity of microphonic potentials from the perch ear. J Exp Biol 60:881–899.PubMedGoogle Scholar
  127. Sand O (1981) The lateral-line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–480.Google Scholar
  128. Sand O (1984) Lateral line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. Cambridge, UK: Cambridge University Press, pp. 3–32.Google Scholar
  129. Sand O, Enger PS (1973) Evidence for an auditory function of the swim bladder in the cod. J Exp Biol 59:405–414.PubMedGoogle Scholar
  130. Sand O, Hawkins AD (1973) Acoustic properties of the cod swim bladder. J Exp Biol 58:797–820.Google Scholar
  131. Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204.PubMedGoogle Scholar
  132. Sand O, Karlsen HE (2000) Detection of infrasound and linear acceleration in fish. Philos Trans Roy Soc Lond B 355:1295–1298.Google Scholar
  133. Sand O, Enger PS, Karlsen HE, Knudsen FR (2001) Detection of infrasound in fish and behavioural responses to intense infrasound in juvenile salmonids and European silver eels: a minireview. Am Fish Soc Symp 26:183–193.Google Scholar
  134. Schellart NAM, Buwalda RJA (1990) Directional variant and invariant hearing thresholds in the rainbow trout (Salmo gairdneri). J Exp Biol 149:113–131.Google Scholar
  135. Schellart NAM, de Munck JC (1987) A model for directional and distance hearing in swim bladder-bearing fish based on the displacement orbits of the hair cells. J Acoust Soc Am 82:822–829.Google Scholar
  136. Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol 98:307–332.Google Scholar
  137. Schuijf A (1976) The phase model of directional hearing in fish. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 63–86.Google Scholar
  138. Schuijf A (1981) Models of acoustic localization. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 267–310.Google Scholar
  139. Schuijf A, Buwalda RJA (1975) On the mechanism of directional hearing in cod (Gadus morhua). J Comp Physiol 98:333–344.Google Scholar
  140. Schuijf A, Hawkins AD (1983) Acoustic distance discrimination by the cod. Nature 302:143–144.Google Scholar
  141. Schuijf A, Siemelink M (1974) The ability of cod (Gadus morhua) to orient towards a sound source. Experientia 30:773–774.PubMedGoogle Scholar
  142. Schuijf A, Baretta JW, Wildschut JT (1972). A field investigation on the discrimination of sound direction in Labrus berggylta (Pisces: Perci-formes). Netherlands J Zool 22:81–104.Google Scholar
  143. Schuijf A, Visser C, Willers AFM, Buwalda RJA (1977) Acoustic localization in an ostariophysian fish. Experientia 33:1062–1063.PubMedGoogle Scholar
  144. Schwartz E (1965) Bau und Funktion der Seitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z vergl Physiol 50:55–87.Google Scholar
  145. Schwartz E (1970) Ferntastsinnesorgane von Oberflächenfischen. Z Morphol Tiere 67:40–57.Google Scholar
  146. Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z vergl Physiol 74:64–80.Google Scholar
  147. Steen JB, Wilsson E (1990) How do dogs determine the direction of tracks? Acta Physiol Scand 139:531–534.PubMedGoogle Scholar
  148. Teyke T (1985) Collision with and avoidance of obstacles by blind cavefish Anoptichthys jordani (Characidae). J Comp Physiol A 157:837–843PubMedGoogle Scholar
  149. Teyke T (1988) Flow field, swimming velocity and boundery layer: parameters which affect the stimulus for the lateral line organ in blind fish. J Comp Physiol A 163:53–61.PubMedGoogle Scholar
  150. Teyke T (1989) Learning and remembering the environment in the blind cavefish Anoptichthys jordani. J Comp Physiol A 164:655–662.Google Scholar
  151. Tittel G (1985) Determination of stimulus direction by the topminnow, Aplocheilus lineatus. A model of two dimensional orientation with the lateral line system. In: Barth FG (ed) Verhandlungen der Deutschen Zoologischen Gesellschaft 78. Stuttgart: Gustav Fischer, p. 242.Google Scholar
  152. Tittel G (1991) Verhaltensphysiologische, ultrastrukturelle und ontogenetische Studien am Seitenliniensystem von Aplocheilus lineatus. Ein vorläufiges Modell zur Richtungsdetermination von Beuteobjekten. PhD Thesis, University of Giessen, 445 pp.Google Scholar
  153. Tittel G, Müller U, Schwartz E (1984) Determination of stimulus direction by the topminnow Aplocheilus lineatus. In: Varju D, Schnitzler HU (eds) Localization and Orientation in Biology and Engineering. New York: Springer-Verlag, pp. 69–72.Google Scholar
  154. van Bergeijk WA (1964) Directional and nondirctional hearing in fish. In: Tavolga WN (ed) Marine Bio-acoustics. Oxford: Pergamon Press, pp. 281–299.Google Scholar
  155. van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology, Vol. 2. New York: Academic Press, pp. 1–49.Google Scholar
  156. von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cavefish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374.Google Scholar
  157. von Frisch K, Dijkgraaf S (1935) Können Fische die Schallrichtung Wahrnehmen? Z Vergl Physiol 2:641–655.Google Scholar
  158. Weeg MS, Fay RR, Bass AH (2002) Directionality and frequency tuning of primary saccular afferents of a vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Physiol A 188:631–641.Google Scholar
  159. Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cavefish Anoptichthys jordani. J Comp Physiol A 143:375–382.Google Scholar
  160. Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101:69–82.Google Scholar
  161. Wubbels RJ, Schellart NAM (1997) Neuronal encoding of sound direction in the auditory midbrain of the rainbow trout. J Neurophysiol 77:3060–3074.PubMedGoogle Scholar
  162. Wubbels RJ, Schellart NAM (1998) An analysis of the relationship between the response characteristics and topography of directional- and non-directional auditory neurons in the torus semicircularis of the rainbow trout. J Exp Biol 201:1947–1958.PubMedGoogle Scholar
  163. Wubbels RJ, Schellart NAM, Goossens JHHLM (1995) Mapping of sound direction in the trout lower midbrain. Neurosci Lett 199:179–182.PubMedGoogle Scholar
  164. Yan H, Fine ML, Horn NS, Colón WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445.PubMedGoogle Scholar
  165. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477.Google Scholar
  166. Zottoli SJ, Faber DS (2000) The Mauthner cell: what has it taught us? Neuroscientist 6:26–38.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Olav Sand
  • Horst Bleckmann

There are no affiliations available

Personalised recommendations