Advertisement

Bioacoustics and the Lateral Line System of Fishes

  • Jacqueline F. Webb
  • John C. Montgomery
  • Joachim Mogdans
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 32)

Keywords

Hair Cell Lateral Line Lateral Line Canal Superficial Neuromast Canal Neuromast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alnaes E (1973) Two types of lateral line afferents in the eel (Anguilla anguilla). Acta Physiol Scand 87:535–548.PubMedGoogle Scholar
  2. Anderson EJ, McGillis WR, Grosenbaugh MA (2001) The boundary layer of swimming fish. J Exp Biol 204:81–102.PubMedGoogle Scholar
  3. Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184:519–527.Google Scholar
  4. Baker CF, Montgomery JC, Dennis TE (2002) The sensory basis of olfactory search behaviour in the banded kokopu (Galaxias fasciatus) J Comp Physiol 188A: 553–560.Google Scholar
  5. Benham AB (2001) Water currents and navigation by fish in shallow water habitats. MSc Thesis, University of Auckland.Google Scholar
  6. Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62:471–514.Google Scholar
  7. Blaxter JHS and Fuiman LA (1990) The role of the sensory systems of herring larvae in evading predatory fishes. J Mar Biol Assoc UK 70: 413–427.Google Scholar
  8. Blaxter JHS, Gray JAB, Best ACG (1983) Structure and development of the free neuromasts and lateral line system of the herring. J Mar Biol Assoc UK 63:247–260.Google Scholar
  9. Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 619–641.Google Scholar
  10. Bleckmann H (1993) Role of the lateral line and fish behavior. In: Pitcher TJ (ed) Behaviour of Teleost Fishes. London: Chapman and Hall, pp. 201–246.Google Scholar
  11. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in Zoology, Vol.41. Stuttgart: Gustav Fischer, pp. 1–115.Google Scholar
  12. Bleckmann H, Käse R (1987) Prey localization by surface wave-ray tracing—fish track bugs like oceanographers track storm. Experientia 43:290–293.PubMedGoogle Scholar
  13. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68:624–625.Google Scholar
  14. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128.Google Scholar
  15. Bleckmann H, Bullock TH, Jørgensen, JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84.PubMedGoogle Scholar
  16. Bleckmann H, Gottfried T, Blübaum-Gronau E (1989a) Lateral line system of surface-feeding fish: anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.Google Scholar
  17. Bleckmann H, Tittel G, Blübaum-Gronau E (1989b) The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.Google Scholar
  18. Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757.PubMedGoogle Scholar
  19. Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221.Google Scholar
  20. Braun CB, Coombs S (2000) The overlapping roles of the inner ear and lateral line: the active space of dipole source detection. Phil Trans R Soc Lond 355:1115–1119.Google Scholar
  21. Braun CB, Coombs S, Fay RR (2002) What is the nature of multisensory interaction between octavolateralis sub-systems? Brain Behav Evol 59:162–176.PubMedGoogle Scholar
  22. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol A 127:61–74.Google Scholar
  23. Canfield JG, Eaton RC (1990) Swim bladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature 347:760–762.Google Scholar
  24. Canfield JG, Rose, GJ (1996) Hierarchical sensory guidance of Mauthner-mediated escape responses in goldfish (Carassius auratus) and cichlids (Haplochromis burtoni). Brain Behav Evol 48:137–156.PubMedGoogle Scholar
  25. Carton AG, Montgomery JC (2002) Responses of lateral line receptors to water flow in the Antarctic notothenioid, Trematomus bernacchii. Polar Biol 25:789–793.Google Scholar
  26. Carton AG, Montgomery JC (2003) Evidence of rheotactic component in the odour search behaviour of freshwater eels. J Fish Biol 62:501–516.Google Scholar
  27. Chagnaud BP, Bleckmann H and Hofmann MH (2008) Lateral line nerve fibers do not code bulk water flow direction in turbulent flow. Zoology (in press).Google Scholar
  28. Chagnaud BP, Hofmann MH, Mogdans J (2007) Responses to dipole stimuli of anterior lateral line nerve fibers in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193:249–263.Google Scholar
  29. Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 409–419.Google Scholar
  30. Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–416.PubMedGoogle Scholar
  31. Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol 167A:557–567.Google Scholar
  32. Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Popper AN and Fay RR (eds) Comparative Hearing: Fishes and Amphibians. New York: Springer-Verlag, pp. 319–362.Google Scholar
  33. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: phylogenetic and functional considerations. In: Atema, J, Fay, RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.Google Scholar
  34. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371.PubMedGoogle Scholar
  35. Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626.Google Scholar
  36. Coombs S, Braun CB, Donovan B (2001) Orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348.PubMedGoogle Scholar
  37. Cubbage CC, Mabee PM (1996) Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J Morphol 229:121–160.Google Scholar
  38. Denton EJ, Gray JAB (1982) The rigidity of fish and patterns of lateral line stimulation. Nature 297:679–681.PubMedGoogle Scholar
  39. Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc Roy Soc Lond B 218:1–26.Google Scholar
  40. Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 595–617.Google Scholar
  41. Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer-Verlag, pp. 229–246.Google Scholar
  42. Elepfandt A, Wiedemer L (1987) Lateral-line responses to water surface waves in the clawed frog Xenopus laevis. J Comp Phyiol A 160:667–682.Google Scholar
  43. Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still- and running water. Zoology 7:135–51.Google Scholar
  44. Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52.PubMedGoogle Scholar
  45. Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526.Google Scholar
  46. Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations of the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 575–587.Google Scholar
  47. Fay RR, Edds-Walton PL (2001) Bimodal units in the torus semicircularis of the toadfish (Opsanus tau). Biol Bull 201:280–281.PubMedGoogle Scholar
  48. Fuiman LA, Higgs DM, Poling KR (2004) Changing structure and function of the ear and lateral line system of fishes during development. Am Fish Soc Symp 40:117–144.Google Scholar
  49. Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338.Google Scholar
  50. Gray JAB, Denton EJ (1991) Fast pressure pulses and communication between fish. J Mar Biol Assoc UK 71:83–106.Google Scholar
  51. Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae), and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596.PubMedGoogle Scholar
  52. Hanke W, Brücker C, Bleckmann H (2000) The ageing of low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200.PubMedGoogle Scholar
  53. Hanke W, Rüter A, Bleckmann H (2002) Verbesserte Strömungsmessungen zur Untersuchung natürlich vorkommender hydrodynamischer Reize. Deutsche Gesellschaft für Laseranemometrie. GALA e. V., Rostock.Google Scholar
  54. Harden Jones, F, Arnold GP, Greer-Walker M, Scholes P (1979) Selective tidal stream transport and the migration of plaice (Pleuronectes platessa L.) in the southern North Sea. J Conseil Int Explor Mer 38:331–337.Google Scholar
  55. Harvey R, Blaxter JHS, Hoyt RD (1992) Development of superficial and lateral line neuromasts in larvae and juveniles of plaice (Pleuronectes platessa) and sole (Solea solea). J Mar Biol Assoc UK 72:651–668.Google Scholar
  56. Hassan ES (1985) A suggested role for secondary flow in the stimulation of the cochlear hair cell. Biol Cyber 53:109–119.Google Scholar
  57. Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 217–228.Google Scholar
  58. Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biol Cyber 66:443–452.Google Scholar
  59. Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biol Cyber 66:453–461.Google Scholar
  60. Hay AM, Adams CE (1997) Foraging of the ruffe (Gymnocephalus cernuus): responses in the absence of visual cues. In: International Symposium on Biology and Management of Ruffe, Abstracts, p. 43.Google Scholar
  61. Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fishes 12:111–117.Google Scholar
  62. Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Anim Behav 32:840–851.Google Scholar
  63. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.PubMedGoogle Scholar
  64. Janssen J (1990) Localization of substrate vibrations by the mottled sculpin (Cottus bairdi) Copeia 1990:349–355.Google Scholar
  65. Janssen J (1996) Use of the lateral line and tactile senses in feeding in four Antarctic nototheniid fishes. Environ Biol Fish 47:51–64.Google Scholar
  66. Janssen J (2000) Toxicity of cobalt: implications for lateral line studies. J Comp Phys A. 186:957–960.Google Scholar
  67. Janssen J, Sideleva V, Biga H (1999) Use of the lateral line for feeding in two Lake Baikal sculpins. J Fish Biol 54:404–416.Google Scholar
  68. Jones WR, Janssen J (1992) Lateral line development and feeding behavior in the mottled sculpin Cottus bairdi (Scorpaeniformes: Cottidae) Copeia. 1992:485–492.Google Scholar
  69. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.Google Scholar
  70. Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–216.Google Scholar
  71. Kanter M, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–60.PubMedGoogle Scholar
  72. Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–262.Google Scholar
  73. Kirk KL (1985) Water flows produced by Daphnia and Diaptomus: implications for prey selection by mechanosensory predators. Limnol Oceanogr 30:679–686.Google Scholar
  74. Kroese ABA, Schellart NAM (1992) Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophysiol 68:2212–2221.PubMedGoogle Scholar
  75. Kroese ABA, van Netten SM (1989) Sensory transduction in lateral line hair cells. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 265–284.Google Scholar
  76. Kröther A, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205:1471–1484.PubMedGoogle Scholar
  77. Kröther A, Bleckmann H, Mogdans J (2004) Effects of running water on brainstem lateral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. J Comp Physiol A 190:437–448.Google Scholar
  78. Lang HH (1980) Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246.Google Scholar
  79. Liang XF, Liu JK, Huang BY (1998) The role of sense organs in the feeding behaviour of Chinese perch. J Fish Biol 52:1058–1067.Google Scholar
  80. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206, 1059–1073.PubMedGoogle Scholar
  81. McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 341–364.Google Scholar
  82. McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47:113–138.PubMedGoogle Scholar
  83. Metcalfe WK (1989) Organization and development of the zebrafish posterior lateral line. In: Coombs S, Münz H, Görner P (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 147–160.Google Scholar
  84. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182:659–676.Google Scholar
  85. Mogdans J, Bleckmann H (2001) The mechanosesory lateral line of jawed fishes. In: Kapoor BG, Hara TJ (eds) Sensory Biology of Jawed Fishes—New Insights. Enfield, NH: Science Publishers, pp. 181–213.Google Scholar
  86. Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102:227–237.Google Scholar
  87. Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104:153–166.PubMedGoogle Scholar
  88. Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50:261–283.PubMedGoogle Scholar
  89. Mogdans J, Engelmann, Hanke W, Kröther S (2003) The fish lateral line: how to detect hydrodynamic stimuli. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and Sensing in Biology and Engineering. New York: Springer-Verlag, pp. 173–185.Google Scholar
  90. Montgomery JC (1989) Lateral line detection of planktonic prey. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 561–574.Google Scholar
  91. Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148.PubMedGoogle Scholar
  92. Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish, Trematomus bernacchii. Brain Behav Evol 40:209–216.PubMedGoogle Scholar
  93. Montgomery JC, Coombs S (1998) Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J Exp Biol 201:91–102.Google Scholar
  94. Montgomery JC, Hamilton AR (1997) Sensory contributions to nocturnal prey capture in the dwarf scorpion fish (Scorpaena papillosus). Mar Freshwater Behav Physiol30:209–223.Google Scholar
  95. Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196.PubMedGoogle Scholar
  96. Montgomery JC, Milton RC (1993) Use of the lateral line for feeding in torrentfish (Cheimarrichthys fosteri). NZ J Zool 20:121–125.Google Scholar
  97. Montgomery JC, Saunders AJ (1985) Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc Roy Soc B Lond 224:197–208.Google Scholar
  98. Montgomery JC, Coombs S, Janssen J (1994) Form and function relationships in lateral line systems: comparative data from six species of Antarctic notothenioid fish. Brain Behav Evol 44:299–306.PubMedGoogle Scholar
  99. Montgomery JC, Coombs S, Conley RS, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231.Google Scholar
  100. Montgomery JC, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J Exp Biol 199:893–899.PubMedGoogle Scholar
  101. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963.Google Scholar
  102. Montgomery JC, Coombs S and Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astynax fasciatus. Environ Biol Fishes 62:87–96.Google Scholar
  103. Montgomery JC, Mcdonald F, Baker CF, Carton AG (2002) Hydrodynamic contributions to multi-modal guidance of prey capture behavior in fish. Brain Behav Evol 59:190–198.PubMedGoogle Scholar
  104. Montgomery JC, Mcdonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc Roy Soc Biol Sci 270 (Suppl 2): 195–197.Google Scholar
  105. Mukai Y, Yoshikawa, H, Kobayashi H (1994) The relationship between the length of the cupulae of free neuromasts and feeding ability in larvae of the willow shiner Gnathopogon elongatus caerulescens (Teleostei, Cyprinidae). J Exp Biol 197:399–403.PubMedGoogle Scholar
  106. Müller U, Schwartz E (1982) Influence of single neuromasts on prey-localizing behavior of surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 149:399–408.Google Scholar
  107. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568.Google Scholar
  108. Münz H (1986) What influences the development of canal and superficial neuromasts? Ann Mus R Afr Centr Sci Zool 251:85–89.Google Scholar
  109. Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 285–297.Google Scholar
  110. Murakami T, Fukuoka T, Ito H (1986) Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to fiber connections of the nucleus preglomerulosus. J Comp Neurol 247:383–397.PubMedGoogle Scholar
  111. Nelson ME, MacIver MA, Coombs S (2002) Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish. Brain Behav Evol 59:199–210.PubMedGoogle Scholar
  112. New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546.PubMedGoogle Scholar
  113. New JG, Fewkes LA, Khan AN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol 204:1207–1221.PubMedGoogle Scholar
  114. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line:Neurobiology and Evolution. New York: Springer-Verlag, pp 17–78.Google Scholar
  115. Peach MB (2001) The dorso-lateral pit organs of the Port Jackson shark contribute sensory information for rheotaxis. J Fish Biol 59:696–704.Google Scholar
  116. Plachta D, Mogdans J, Bleckmann H (1999) The responses of midbrain lateral line units to amplitude modulated hydrodynamic stimuli. J Comp Physiol A 185:405–417.Google Scholar
  117. Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. J Exp Biol 206:3479–3486.PubMedGoogle Scholar
  118. Pohlmann K, Grasso FW, Briethaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374.PubMedGoogle Scholar
  119. Pohlmann K, Atema J, Briethaupt T (2004) The importance of the lateral line in nocturnal predation of the piscivorous catfish. J Exp Biol 207:2971–2978.PubMedGoogle Scholar
  120. Poling KR, Fuiman LA (1997) Sensory development and concurrent behavioural changes in Atlantic croaker larvae. J Fish Biol 51:402–421.Google Scholar
  121. Popper AN (1977) A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J Morphol 153:497–418.Google Scholar
  122. Popper AN (2002) An overview of the applied use of sound in fisheries and fish biology. Bioacoustics 12:303–305.Google Scholar
  123. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131.PubMedGoogle Scholar
  124. Rowe DK, Dean TL, Williams E, Smith JP (2003) Effects of turbidity on the ability of juvenile rainbow trout, Oncorhynchus mykiss, to feed on limnetic and benthic prey in laboratory tanks. NZ J Mar Freshwater Res 37:45–52.Google Scholar
  125. Ryer CH, Lawton A, Lopez RJ, Olla BL (2002) A comparison of the functional ecology of visual vs. nonvisual foraging in two planktivorous marine fishes. Can J Fish Aquat Sci 59:1305–1314.Google Scholar
  126. Satou M, Shiraishi A, Matsushima T, Okumoto N (1991) Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka) J Comp Physiol A 168:417–428.Google Scholar
  127. Satou M, Takeuchi HA, Nishii J, Tanabe M, Kitamura S, Okumoto N, Iwata M (1994) Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the hime salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol 174 A: 539–549.Google Scholar
  128. Saunders AJ, Montgomery JC (1985) Field and laboratory studies of the feeding behaviour of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proc Roy Soc B Lond 224:209–221.Google Scholar
  129. Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 421–443.Google Scholar
  130. Schellart NAM, Popper AN (1992) Functional aspects of the auditory system of actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing, Springer-Verlag, New York, pp. 295–322.Google Scholar
  131. Schilt CR (2002) Natural history in an unnatural environment: can we help fish to help themselves? Bioacoustics 12:310–313.Google Scholar
  132. Smith WL, Webb JF, Blum SD (2003) The evolution of the laterophysic connection with a revised phylogeny and taxonomy of butterflyfishes (Teleostei: Chaetodontidae). Cladistics 19:287–306.Google Scholar
  133. Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37.PubMedGoogle Scholar
  134. Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312:311–331.PubMedGoogle Scholar
  135. Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd Canada 32:2441–2446.Google Scholar
  136. Tarby ML, Webb JF (2003) Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus. J Morphol 254:44–57.Google Scholar
  137. Tavolga WN (1976) Acoustic obstacle detection in the sea catfish, Galeichthys felis In: Schuiff A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 185–204.Google Scholar
  138. Thorpe JE (1988) Salmon migration. Sci Prog Oxford 72:345–370.Google Scholar
  139. Tittel G, Müller U, Schwartz E (1984) Determination of stimulus direction by the topminnow Aplocheilus lineatus. In: Varju D, Schnitzler H-U (eds) Localization and Orientation in Biology and Engineering. New York: Springer-Verlag, pp. 69–72.Google Scholar
  140. Tricas TC, Boyle KS (2005) The evolution of pairing behavior, sound production and hearing in chaetodontid butterflyfishes: evidence from behavior and physiology. Brain Behav Evol 66:143.Google Scholar
  141. Tricas TC, Kajiura SM, Kosaki RK (2006) Acoustic communication in territorial butterflyfish: test of the sound production hypothesis. J Exp Biol 209:4994–5004.PubMedGoogle Scholar
  142. van Netten SM, Kroese ABA (1987) Laser interferometric measurement on the dynamic behavior of the cupula in the fish lateral line. Hear Res 29:55–61.PubMedGoogle Scholar
  143. van Netten SM, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 247–264.Google Scholar
  144. van Netten SM, Kelly JP, Khanna SM (1990) Dynamic responses of the cupula in the fish lateral line are spatially nonuniform. Abstracts of the 13th Midwinter Meeting for Research into Otolaryngology, 1990, St. Petershurg, Florida, pp. 341, 342.Google Scholar
  145. Vischer HA (1989) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). Brain Behav Evol 33:205–222.PubMedGoogle Scholar
  146. Vogel D, Bleckmann H (1997) Water wave discrimination in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol 180A:671–681.Google Scholar
  147. Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203:2495–2502.PubMedGoogle Scholar
  148. von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374.Google Scholar
  149. Webb JF (1989a) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P and Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 79–98.Google Scholar
  150. Webb JF (1989b) Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes. Brain Behav Evol 33:34–53.Google Scholar
  151. Webb JF (1998) Laterophysic connection: a unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia 1998:1032–1036.Google Scholar
  152. Webb JF (2000a) Mechanosensory lateral line: microscopic anatomy and development. In: Ostrander G (ed) Handbook of Experimental Animals—The Laboratory Fish. London: Academic Press, pp. 463–470.Google Scholar
  153. Webb JF (2000b) Mechanosensory lateral line: functional morphology and neuroanatomy. In: Ostrander G (ed) Handbook of Experimental Animals—The Laboratory Fish. London: Academic Press, pp. 236–244.Google Scholar
  154. Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol. 50:139–151.PubMedGoogle Scholar
  155. Webb JF, Shirey JE (2003). Post-embryonic development of the lateral line canals and neuromasts in the zebrafish. Dev Dyn 228:370–385.PubMedGoogle Scholar
  156. Webb JF, Smith WL (2000) The laterophysic connection in chaetodontid butterflyfish: morphological variation and speculations on sensory function. Philos Trans Roy Soc Lond B 355:1125–1129.Google Scholar
  157. Webb JF, Smith WL, Herman JL, Woods CF, Ketten DF (2005) The laterophysic connection: peripheral specialization for reception of acoustic stimuli in chaetodontid butterflyfishes? Brain Behav Evol 66:143–144.Google Scholar
  158. Webb JF, Smith WL, Ketten DR (2006) The laterophysic connection and swim bladder in butterflyfishes in the genus Chaetodon (Perciformes: Chaetodontidae). J Morphol 267:1338–1355.PubMedGoogle Scholar
  159. Weeg MS, Bass AH (2002) Structural and functional evidence for acoustic-lateral line interactions in a vocal fish. Bioacoustics 12:161–163.Google Scholar
  160. Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish (Anoptichthys jordani: Characidae). J Comp Physiol 143:375–381.Google Scholar
  161. Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101:69–82.Google Scholar
  162. Wonsettler AL, Webb JF (1997) Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes: Hexagrammidae). J Morphol 233:195–214.Google Scholar
  163. Wubbels RJ (1992) Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comp Biochem Physiol A 102A:19–26.Google Scholar
  164. Wubbels RJ, Kroese ABA, Schellart, NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179:77–92.Google Scholar
  165. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477.Google Scholar
  166. Zottoli SJ, Bentley AP, Prendergast BJ, Reiff HI (1995) Comparative studies on the Mauthner cell of teleost fish in relation to sensory input. Brain Behav Evol 46:151–164.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jacqueline F. Webb
  • John C. Montgomery
  • Joachim Mogdans

There are no affiliations available

Personalised recommendations