Skip to main content

Evolution of Peripheral Mechanisms for the Enhancement of Sound Reception

  • Chapter
Book cover Fish Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 32))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RM (1962) The structure of the Weberian apparatus in the Cyprini. Proc Zool Soc Lond 129:451–473.

    Google Scholar 

  • Aquino AE, Schaefer SA (2002) The temporal region of the cranium of Loricarioid catfishes (Teleostei: Siluriformes): morphological diversity and phylogenetic significance. Zool Anz 241:223–244.

    Google Scholar 

  • Astrup J (1999) Ultrasound detection in fish—a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects? Comp Biochem Physiol A 124:19–27.

    CAS  Google Scholar 

  • Astrup J, Møhl B (1993) Detection of intense ultrasound by the Cod Gadus morhua. J Exp Biol 182:71–80.

    Google Scholar 

  • Bateson W (1894) Materials for the Study of Variation Treated with Especial Regard to Discontinuity in the Origin of Species. London: Macmillan and Co.

    Google Scholar 

  • Best ACG, Gray JAB (1980) Morphology of the utricular recess in the sprat. J Mar Biol Assoc UK 60:703–715.

    Google Scholar 

  • Blaxter JHS (1978) Baroreception. In: Ali, MA (ed) Sensory Ecology. New York: Plenum Press, pp. 375–409.

    Google Scholar 

  • Blaxter JHS (1981) The Swimbladder and hearing. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fish. New York: Springer-Verlag, pp. 61–71.

    Google Scholar 

  • Blaxter JHS, Hoss DE (1981) Startle response in herring: the effect of sound stimulus frequency, size of fish and selective interference with the acoustico-lateralis system. J Mar Biol Assoc UK 61:871–879.

    Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314:452–466.

    PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Burgess WE (1989) An Atlas of Freshwater and Marine Catfishes. Neptune City, NJ: T.F.H. Publications.

    Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sounds from opposing directions. J Comp Physiol 150:175–184.

    Google Scholar 

  • Cahn PH, Siler W, Wodinsky J (1969) Acoustico-lateralis system of fishes: tests of pressure and particle-velocity sensitivity in Grunts, Haemulon sciurus and Haemulon parrai. J Acoust Soc Am 46:1572–1578.

    PubMed  CAS  Google Scholar 

  • Cain P (1995) Navigation in familiar environments by the weakly electric elephantnose fish, Gnathonemus petersii L. (Mormyriformes, Teleostei). Ethology 99: 332–349.

    Google Scholar 

  • Cain P, Gerin W, Moller P (1994) Short-range navigation of the weakly electric fish, Gnathonemus petersii L. (Mormyridae, Teleostei), in novel and familiar environments. Ethology 96:33–45.

    Google Scholar 

  • Chao NL (1986) A synopsis on zoogeography of the Sciaenidae. In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. Tokyo, Japan: Ichthyological Society of Japan, pp. 570–589.

    Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol 85:147–167.

    Google Scholar 

  • Chapman CJ, Johnstone ADF (1974) Some auditory discrimination experiments on marine fish. J Exp Biol 61:521–528.

    PubMed  CAS  Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (family Pleuronectidae). Comp Biochem Physiol 47A:371–385.

    Google Scholar 

  • Chardon M, Vandewalle P (1997) Evolutionary trends and possible origin of the Weberian apparatus. Netherlands J Zool 47:383–403.

    Google Scholar 

  • Chardon M, Parmentier E, Vandewalle P (2003) Morphology, development and evolution of the Weberian apparatus in catfish. In: Arratia G, Kapoor BG, Chardon M, Diogo R (eds) Catfishes. Enfield, CT: Scientific Publishers, pp. 72–120.

    Google Scholar 

  • Cichocki FP (1976) Cladistic history of cichlid fishes and reproductive strategies of the american genera Acarichthys, Biotodoma and Geophagus. Ph.D. Thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Coburn MM, Grubach PG (1998) Ontogeny of the armored catfish Corydoras paleatus (Siluriformes: Callichthyidae). Copeia 1998:301–311.

    Google Scholar 

  • Collette B, Nauen C (1983) FAO Species Catalog, Vol. 2. Scombrids of the World. An Annotated and Illustrated Catalog of Tuna Mackerels, Bonitos and Related Species Known to Date. FAO Fish. Synop. No. 125: i-vii + 1–137.

    Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 319–362.

    Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfishes (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol 132:203–207.

    Google Scholar 

  • Coombs S, Popper AN (1980) Auditory sensitivity and inner ear ultrastructure in Osteoglossum bicirrhosum. Am Zool 20:785.

    Google Scholar 

  • Coombs S, Popper AN (1982a) Structure and function of the auditory system in the clown knifefish, Notopterus chitala. J Exp Biol 97:225–239.

    Google Scholar 

  • Coombs S, Popper AN (1982b) Comparative frequency selectivity in fishes: simultaneously and forward- masked psychophysical tuning curves. J Acoust Soc Am 71:133–141.

    Google Scholar 

  • Crawford JD, Jacobe P, Bénech V (1997) Field studies of a strongly acoustic fish in West Africa: reproductive ecology and acoustic behavior of Pollimyrus isidori, Mormyridae. Behaviour 134:677–725.

    Google Scholar 

  • Denton EJ, Blaxter JHS (1976) The mechanical relationships between the clupeid swimbladder, inner ear and lateral line. J Mar Biol Assoc UK 56:787–807.

    Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc Roy Soc Lond B 218:1–26.

    CAS  Google Scholar 

  • Denton EJ, Gray JAB (1993) Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philos Trans Roy Soc Lond B 341:113–127.

    Google Scholar 

  • Denton EJ, Gray JAB, Blaxter JHS (1979) The mechanics of the clupeid acoustico-lateralis system: frequency responses. J Mar Biol Assoc UK 59:27–47.

    Google Scholar 

  • de Pinna M, Grande T (2003) Ontogeny of the accessory neural arch in pristigasteroid clupeomorphs and its bearing on the homology of the otophysan claustrum (Teleostei). Copeia 2003:838–845.

    Google Scholar 

  • Dunning DJ, Ross QE, Geoghegan P, Reichle JJ, Menezes JK, Watson JK (1992) Alewives avoid high frequency sound. N Am J Fish Man 12:407–416.

    Google Scholar 

  • Enger PS (1967) Hearing in herring. Comp Biochem Physiol 22:527–538.

    PubMed  CAS  Google Scholar 

  • Eschmeyer WN (1966) Re-evaluation of the position of the family Dussumieriidae in clupeoid phylogeny. Forty-sixth Annual Meeting of the Society for Ichthyhology and Herpetology, Miami, FL.

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.

    PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (1975) Modes of stimulation in the teleost ear. J Exp Biol 62:379–387.

    PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10.

    PubMed  CAS  Google Scholar 

  • Fink SV, Fink WL (1981) Interrelationships of ostariophysan fishes (Ostariophysi). Zool J Linn Soc 72:297–353.

    Google Scholar 

  • Fink SV, Fink WL (1996) Interrelationships of ostariophysan fishes (Teleostei). In: Stiassny MLJ, Parenti RL, Johnson GD (eds) Interrelationships of Fishes. San Diego: Academic Press, pp. 209–249.

    Google Scholar 

  • Fletcher LB, Crawford JD (2001) Acoustic detection by sound-producing fishes (Mormyridae): the role of gas-filled tympanic bladders. J Exp Biol 204:175–183.

    PubMed  CAS  Google Scholar 

  • Gans C (1992) An overview of the evolutionary biology of hearing. In: Webster, DB Fay, RR, Popper, AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 3–13.

    Google Scholar 

  • Gayet M (1981) Contribution à l’étude anatomique et systématique de l’ichthyofaune cénomanienne du Portugal. Deuxième partie: les ostariophysaires. Comm Serv Geol Portugal 67:173–190.

    Google Scholar 

  • Gayet M (1985) Rôle de l’évolution de l’appareil de Weber dans la phylogénie des Ostariophysi, suggéré par un nouveau Characiforme du Cénomanien supérieur narin de Portugal. C R Séances Acad Sci, Sér 2. 300:895–898.

    Google Scholar 

  • Gayet M, Chardon M (1987) Possible otophysic connections in some fossil and living ostariophysan fishes. Proc Euro Ichthyol Co Stockholm 1985:31–42.

    Google Scholar 

  • Gosline WA (1966) The limits of the fish family Serranidae, with notes on other lower percoids. Proc Cal Acad Sci 33:91–112.

    Google Scholar 

  • Grande L (1985) Recent and fossil clupeomorph fishes with materials for revision of the subgroups of clupeids. Bull Am Mus Nat Hist 181:235–307.

    Google Scholar 

  • Grande T, de Pinna M (2004) The evolution of the Weberian apparatus: a phylogenetic perspective. In: Arratia G, Schultze H-P (eds) Mesozoic Fishes 3—Systematics, Paleoenvironments and Biodiversity. Munich: Dr. Friedrich Pfeil-Verlag, pp. 429–448.

    Google Scholar 

  • Grande T, Poyato-Ariza FJ (1999) Phylogenetic relationships of fossil and recent gonorynchiform fishes (Teleostei: Ostariophysi). Zool J Linn Soc 125:197–238.

    Google Scholar 

  • Grande T, Young B (2004) The ontogeny and homology of the Weberian apparatus in the zebrafish Danio rerio (Ostariophysi: Cypriniformes). Zool J Linn Soc 140:241–254.

    Google Scholar 

  • Gray JAB (1984) Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc Roy Soc Lond B 220:299–325.

    Google Scholar 

  • Gray JAB, Denton EJ (1979) The mechanics of the clupeid acoustico-lateralis system: low frequency measurements. J Mar Biol Assoc UK 59:11–26.

    Google Scholar 

  • Gray JAB, Denton EJ (1991) Fast pressure pulses and communication between fish. J Mar Biol Assoc UK 71:83–106.

    Google Scholar 

  • Green JM (1971) Studies on the swim bladders of Eucinostomus gula andE. argenterus (Pisces: Gerreidae). Bull Mar Sci 21:567–590.

    Google Scholar 

  • Greenwood PH (1963) The swimbladder in African Notopteridae (Pisces) and its bearing on the taxonomy of the family. Bull Br Mus Nat Hist Zool 11:377–412.

    Google Scholar 

  • Greenwood PH (1968) The osteology and relationships of the Denticipitidae, a family of clupeomorph fishes. Bull Br Mus Nat Hist Zool 16:215–273.

    Google Scholar 

  • Greenwood PH (1970) Skull and swim bladder connections in fishes of the family Megalopidae. Bull Br Mus Nat Hist Zool 19:121–135.

    Google Scholar 

  • Hawkins AD (1986) Underwater sound and fish behavior. In: Pitcher, TJ (ed) Behavior of Teleost Fishes. London: Chapman and Hall, pp. 129–169.

    Google Scholar 

  • Hawkins AD, Sand O (1977) Directional hearing in the median vertical plane by the cod. J Comp Physiol A 122:1–8.

    Google Scholar 

  • Herre, AW and Montalban, HR (1927) The Phillipine butterflyfishes and their allies. Phillipine J. Sci 34:1–113.

    Google Scholar 

  • Higgs DM, Plachta DTT, Rollo AK, Singheiser M, Hastings MC, Popper AN (2004) Development of ultrasound detection in American shad (Alosa sapidissima). J Exp Biol 207:155–163.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    PubMed  CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the ‘‘Protocanthopterygii’’. Mol Phylo Evol 27:476–488.

    CAS  Google Scholar 

  • Johnson GD (1980) The limits and relationships of the Lutjanidae and associated families. Bull Scripps Inst Ocean 24:1–114.

    Google Scholar 

  • Johnson GD, Patterson C (1996) Relationships of lower euteleostean fishes. In: Stiassny MLJ, Parenti RL, Johnson GD (eds) Interrelationships of Fishes. San Diego: Academic Press, pp. 251–332.

    Google Scholar 

  • Jørgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 115–145.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–216.

    Google Scholar 

  • Kalmijn AJ (1997) Electric and near-field acoustic detection, a comparative study. Acta Physiol Scand 161(Suppl 638):25–38.

    Google Scholar 

  • Katayama M (1959) Studies on the serranid fishes of Japan I. Bull Fac Educ Yamaguichi U 8:103–180.

    Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: The auditory brainstem response approach. J Comp Physiol A 182:307–318.

    PubMed  CAS  Google Scholar 

  • Kramer B, Tautz J, Markl H (1981) The EOD sound response in weakly electric fish. J Comp Physiol A 143:435–441.

    Google Scholar 

  • Kratochvil H, Ladich F (2000) Auditory role of the lateral trunk channels in cobitid fishes. J Comp Physiol A 186:279–285.

    PubMed  CAS  Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53:288–304.

    PubMed  CAS  Google Scholar 

  • Ladich F (2000) Acoustic communication and the evolution of hearing in fishes. Philos Trans Roy Soc Lond B 355:1285–1288

    CAS  Google Scholar 

  • Ladich F, Wysocki LE (2003) How does tripus extirpation affect auditory sensitivity in goldfish? Hear Res 182:119–129.

    PubMed  Google Scholar 

  • Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol A 182:737–746.

    PubMed  CAS  Google Scholar 

  • Lê HLV, Lecointre G, Perasso R (1993) A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phylo Evol 2:31–51.

    Google Scholar 

  • Lecointre G (1995) Molecular and morphological evidence for a Clupeomorpha-Ostariophysi sister-group relationship. Geobios 19:205–210.

    Google Scholar 

  • Lecointre G, Nelson G (1996) Clupeomorpha, sister-group of Ostariophysi. In: Stiassny MLJ, Parenti RL, Johnson GD (eds) Interrelationships of Fishes. San Diego: Academic Press, pp. 193–207.

    Google Scholar 

  • Leis JM (1994) Larvae, adults and relationships of the monotypic perciform fish family Lactariidae. Rec Aust Mus 46:131–143.

    Google Scholar 

  • Liem KF (1963) The Comparative Osteology and Phylogeny of the Anabantoidei (Teleostei, Pisces). Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Lighthill J (1993) Estimates of the pressure differences across the head of a swimming clupeid fish. Philos Trans Roy Soc Lond B 341:129–140.

    Google Scholar 

  • Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol A 179:227–233.

    PubMed  CAS  Google Scholar 

  • Lugli M, Yan HY, Fine ML (2003) Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J Comp Physiol A 189:309–320.

    CAS  Google Scholar 

  • MacDonald CM (1978) Morphological and biochemical systematics of Australian freshwater and estuarine percicthyid fishes. Austral J Mar Fresh Res 29:667–698.

    CAS  Google Scholar 

  • Mann DA, Lu Z (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104:562–568.

    PubMed  CAS  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Popper AN, Souza MJ (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054.

    PubMed  CAS  Google Scholar 

  • McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J Comp Physiol A 155:753–761.

    Google Scholar 

  • McKay R (1985) A revision of the fishes of the family Sillanginidae. Mem Queensland Mus 22:1–74.

    Google Scholar 

  • Nelson EM (1955) The morphology of the swimbladder and auditory bulla in the Holocentridae. Fieldiana Zool 37:121–130.

    Google Scholar 

  • Nestler JM, Ploskey GR, Pickens J, Menezes J, Schilt C (1992) Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. N Am J Fish Man 12:667–683.

    Google Scholar 

  • O’Connell CP (1955) The gas bladder and its relation to the inner ear in Sardinops caerulea and Engraulis mordax. Fish Bull Fish Wildlife Service (US) 56:505–533.

    Google Scholar 

  • Offut GC (1968) Auditory response in the goldfish. J Aud Res 8:391–400.

    Google Scholar 

  • Offutt GC (1974) Structures for the detection of acoustic stimuli in the Atlantic codfish, Gadus morhua. J Acoust Soc Am 56:665–671.

    PubMed  CAS  Google Scholar 

  • Patterson C (1967) Are the teleosts a polyphyletic group? In: Problèms Actuels de Paléontologie (Evolution des Vertebrés). Coll Int Cent Natn Res Scient 163:93–109.

    Google Scholar 

  • Patterson C (1984) Chanoides, a marine Eocene otophysan fish (Teleostei: Ostariophysi). J Vert Paleo 4:430–456.

    Google Scholar 

  • Plachta DTT, Song J, Halvorsen MB, Popper AN (2004) Neuronal encoding of ultrasonic sound by a fish. J. Neurophys 91:2590–2597.

    Google Scholar 

  • Poggendorf D (1952) Die absoluten Hörschwellen des Zwergwelses (Amiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z Vergl Physiol 34:222–257.

    Google Scholar 

  • Popper AN, Fay RR (1997) Evolution of the ear and hearing: Issues and questions. Brain Behav Evol 50:213–221.

    PubMed  CAS  Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear in the marine catfish, Arius felis. J Comp Physiol 144:27–34.

    Google Scholar 

  • Popper AN, Salmon M, Parvulescu A (1973) Sound localization by the Hawaiian Squirrelfishes, Myripristis berndti and M. argyromus. Anim Behav 21:86–97.

    PubMed  CAS  Google Scholar 

  • Ramcharitar J (2002) Unique ear structure of silver perch Bairdiella chrysoura. Bioacoustics 12:122–124.

    Google Scholar 

  • Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 131–149.

    Google Scholar 

  • Rosen DE, Greenwood PH (1970) Origin of the Weberian apparatus and the relationships of the ostariophysan and gonorynchiform fishes. Am Mus Novitates 2428:1–25.

    Google Scholar 

  • Ross QE, Dunning DJ, Menezes JK, Kenna MJJ, Tiller GW (1996) Reducing impingement of alewives with high-frequency sound at a power plant intake on Lake Ontario. N Am J Fish Man 16:548–559.

    Google Scholar 

  • Saidel WM, Popper AN (1987) Sound reception in two anabantid fishes. Biochem Physiol 88A:37–44.

    Google Scholar 

  • Saitoh K, Miya M, Inoue JG, Ishiuro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol 56:464–472.

    PubMed  CAS  Google Scholar 

  • Sand O (1974) Directional sensitivity of microphonic potentials from the perch ear. J Exp Biol 60:881–889.

    PubMed  CAS  Google Scholar 

  • Sand O, Enger PS (1973) Evidence for an auditory function of the swimbladder in the cod. J Exp Biol 59:405–414.

    PubMed  CAS  Google Scholar 

  • Sasaki K (1989) Phylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei, Perciformes). Mem Fac Fish Hokkaido Univ 36:1–137.

    Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 295–322.

    Google Scholar 

  • Schneider H (1941) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvernögen. Z Vergl Physiol 29:171–194.

    Google Scholar 

  • Schuijf A (1981) Models of acoustic localization. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 267–310.

    Google Scholar 

  • Schuijf A, Buwalda RJA (1975) On the mechanism of directional hearing in cod (Gadus morhua L.). J Comp Physiol 98:333–343.

    Google Scholar 

  • Schuijf A, Buwalda RJA (1980) Sound localization: a major problem in fish acoustics. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 43–78.

    Google Scholar 

  • Schuijf A, Hawkins AD (1983) Acoustic distance discrimination by the cod. Nature 302:143–144.

    Google Scholar 

  • Schuijf A, Siemelink M (1974) The ability of cod (Gadus morhua) to orient towards a sound source. Experientia 30:773–774.

    PubMed  CAS  Google Scholar 

  • Siler W (1969) Near- and farfields in a marine environment. J Acoust Soc Am 46:483–484.

    Google Scholar 

  • Smith WL, Webb JF, Blum SD (2003) The evolution of the laterophysic connection with a revised phylogeny and taxonomy of butterflyfishes (Teleostei: Chaetodontidae). Cladistics 19:287–306.

    Google Scholar 

  • Sparks JS (2001) Phylogeny and biogeography of the Malagasy and South Asian cichlid fishes (Teleostei: Perciformes: Cichlidae), including a survey of the freshwater fishes of Madagascar. PhD Thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Starks EC (1908) On a communication between the air-bladder and the ear in certain spiny-rayed fishes. Science 28:613–614.

    PubMed  Google Scholar 

  • Starnes WC (1988) Revision, phylogeny and biogeographic comments on the circumtropical marine percoid fish family Priacanthidae. Bull Mar Sci 43:117–203.

    Google Scholar 

  • Stiassny MLJ, Chakrabarty P, Loiselle PV (2001) Relationships of the Madagascan cichlid genus Paretroplus, with a description of a new species from the Betsiboka River drainage of northwestern Madagascar. Ichthyol Explor Freshwater 12:29–40.

    Google Scholar 

  • Stipetič E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752.

    Google Scholar 

  • Tavolga WN (1974) Signal/noise ratio and the critical band in fishes. J Acoust Soc Am 55:323–1333.

    Google Scholar 

  • Tavolga WN (1976) Obstacle avoidance in the sea catfish (Arius felis). In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 185–204.

    Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240.

    Google Scholar 

  • van Bergeijk WA (1964) Directional and non-directional hearing in fish. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford: Pergamon Press, pp. 185–204.

    Google Scholar 

  • von Frisch K (1938) The sense of hearing in fish. Nature 141:8–11.

    Google Scholar 

  • von Heusinger CF (1826) Bemerkungen über das Gehörwerkzeug des Mormyrus cyprinoides, Gastroblecus compressus und Pimelodus synodontis. Arch Anat Physiol Meckel 1:324–327.

    Google Scholar 

  • Webb JF (1998) The laterophysic connection: a unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia 1998:1032–1036.

    Google Scholar 

  • Webb JF, Blum SD (1990) A swim bladder-lateral line connection in the butterflyfish genus Chaetodon (Perciformes: Chaetodontidae). Am Zool 30:98A.

    Google Scholar 

  • Webb JF, Smith WL (2000) The laterophysic connection in chaetodontid butterflyfish: Morphological variation and speculations on sensory function. Phil Trans Roy Soc Lond B 355:1125–1129.

    CAS  Google Scholar 

  • Weber, EH (1820) De Aure et Auditu Hominis et Animalium. Pars I. De Aure Animalium Aquatilium. Leipzig: Gerhard Fleischer.

    Google Scholar 

  • Wysocki LE, Ladich F (2001) Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem responses. Hear Res 169:36–46.

    Google Scholar 

  • Yan HY (1998) Auditory role of the suprabranchial chamber in gourami fish. J Comp Physiol A 183:325–333.

    PubMed  CAS  Google Scholar 

  • Yan HY (2001) A non-invasive electrophysiological study on the enhancement of hearing ability in fishes. Proc IOA 23:15–26.

    Google Scholar 

  • Yan HY, Curtsinger WS (2000) The otic gasbladder as an ancillary auditory structure in a mormyrid fish. J Comp Physiol 186:595–602.

    CAS  Google Scholar 

  • Yan HY, Popper AN (1992) Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 171:1–5.

    Google Scholar 

  • Yan HY, Popper AN (1993) Acoustic intensity discrimination by the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol 173:347–351.

    CAS  Google Scholar 

  • Yan HY, Fine ML, Horn NS, Colon WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445.

    PubMed  CAS  Google Scholar 

  • Yost WA (1994) Fundamentals of Hearing. San Diego, CA: Academic Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Braun, C.B., Grande, T. (2008). Evolution of Peripheral Mechanisms for the Enhancement of Sound Reception. In: Webb, J.F., Fay, R.R., Popper, A.N. (eds) Fish Bioacoustics. Springer Handbook of Auditory Research, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73029-5_4

Download citation

Publish with us

Policies and ethics