Glutamate Receptors and Neurological Disorders

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


Traumatic Brain Injury Spinal Cord Injury Amyotrophic Lateral Sclerosis NMDA Receptor Glutamate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn K. S. and Aggarwal B. B. (2005). Transcription factor NF-κB: a sensor for smoke and stress signals. Ann. N. Y Acad. Sci. 1056:218–233.PubMedGoogle Scholar
  2. Ahn M. J., Sherwood E. R., Prough D. S., Lin C. Y., and DeWitt D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J. Neurotrauma 21:1431–1442.PubMedGoogle Scholar
  3. Akbarian S., Smith M. A., and Jones E. G. (1995). Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res. 699:297–304.PubMedGoogle Scholar
  4. Albensi B. C. (2001). Potential roles for tumor necrosis factor and nuclear factor-κB in seizure activity. J. Neurosci. Res. 66:151–154.PubMedGoogle Scholar
  5. Alberdi E., Sánchez-Gómez M. V., Marino A., and Matute C. (2002). Ca2+ influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol. Dis. 9:234–243.PubMedGoogle Scholar
  6. Alberdi E., Sánchez-Gómez M. V., Torre I., Domercq M., Pérez-Samartín A., Pérez-Cerdá F., and Matute C. (2006). Activation of kainate receptors sensitizes oligodendrocytes to complement attack. J. Neurosci. 26:3220–3228.PubMedGoogle Scholar
  7. Aleman A., Hijman R., de Haan E. H., and Kahn R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. Am. J. Psychiatry 156:1358–1366.PubMedGoogle Scholar
  8. Almer G., Guegan C., Teismann P., Naini A., Rosoklija G., Hays A. P., Chen C. P., and Przedborski S. (2001). Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol. 49:176–185.PubMedGoogle Scholar
  9. Álvarez S., Serramía M. J., Fresno M., and Muñoz-Fernández M. A. (2005). Human immunodeficiency virus type 1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in neuroblastoma cells through a nuclear factor-κB and activating protein-1 mediated mechanism. J. Neurochem. 94:850–861.PubMedGoogle Scholar
  10. Ananth C., Dheen S. T., Gopalakrishnakone P., and Kaur C. (2003a). Distribution of NADPH-diaphorase and expression of nNOS, N-methyl-D-aspartate receptor (NMDAR1) and non-NMDA glutamate receptor (GlutR2) genes in the neurons of the hippocampus after domoic acid-induced lesions in adult rats. Hippocampus 13:260–272.Google Scholar
  11. Ananth C., Gopalakrishnakone P., and Kaur C. (2003b). Induction of inducible nitric oxide synthase expression in activated microglia following domoic acid (DA)-induced neurotoxicity in the rat hippocampus. Neurosci. Lett. 338:49–52.Google Scholar
  12. Ananth C., Gopalakrishnakone P., and Kaur C. (2003c). Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats. Hippocampus 13:375–387.Google Scholar
  13. Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci.S18-S25.Google Scholar
  14. Arlt S., Beisiegel U., and Kontush A. (2002). Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr. Opin. Lipidol. 13:289–294.PubMedGoogle Scholar
  15. Arundine M. and Tymianski M. (2004). Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol. Life Sci. 61:657–668.PubMedGoogle Scholar
  16. Auer R. N. and Siesjö B. K. (1988). Biological differences between ischemia, hypoglycemia, and epilepsy. Ann. Neurol. 24:699–707.PubMedGoogle Scholar
  17. Auger C. and Attwell D. (2000). Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558.PubMedGoogle Scholar
  18. Bacman S. R., Bradley W. G., and Moraes C. T. (2006). Mitochondrial involvement in amyotrophic lateral sclerosis - Trigger or target? Mol. Neurobiol. 33:113–131.PubMedGoogle Scholar
  19. Banati R. B., Newcombe J., Gunn R. N., Cagnin A., Turkheimer F., Heppner F., Price G.,Wegner F., Giovannoni G., Miller D. H., Perkin G. D., Smith T., Hewson A. K., Bydder G., Kreutzberg G. W., Jones T., Cuzner M. L., and Myers R. (2000). The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123 ( Pt 11):2321–2337.PubMedGoogle Scholar
  20. Bate C. and Williams A. (2004). Role of glycosylphosphatidylinositols in the activation of phospholipase A2 and the neurotoxicity of prions. J. Gen. Virol. 85:3797–3804.PubMedGoogle Scholar
  21. Bazan N. G., Rodriguez de Turco E. B., and Allan G. (1995). Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J. Neurotrauma 12:791–814.PubMedGoogle Scholar
  22. Bazan N. G., Tu B., and Rodriguez de Turco E. B. (2002). What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. In: Sutula T. and Pitkanen A. (eds.), Do Seizures Damage the Brain. Perspectives in Analytical Philosophy Elsevier Science BV, Amsterdam, pp. 175–185.Google Scholar
  23. Beal M. F. (1998a). Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44:S110-S114.Google Scholar
  24. Beal M. F. (1998b). Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta Bioenergetics 1366:211–223.Google Scholar
  25. Beal M. F. (2003). Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann. N. Y Acad. Sci. 991:120–131.PubMedGoogle Scholar
  26. Beattie M. S., Farooqui A. A., and Bresnahan J. C. (2000). Review of current evidence for apoptosis after spinal cord injury. J. Neurotrauma 17:915–925.PubMedGoogle Scholar
  27. Benveniste H., Jorgensen M. B., Sandberg M., Christensen T., Hagberg H., and Diemer N. H. (1989). Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J. Cereb. Blood Flow Metab. 9:629–639.PubMedGoogle Scholar
  28. Berman F. W. and Murray T. F. (1997). Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release. J. Neurochem. 69:693–703.PubMedGoogle Scholar
  29. Bernard J., Lahsaini A., and Massicotte G. (1994). Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453.PubMedGoogle Scholar
  30. Bethea J. R., Castro M., Keane R. W., Lee T. T., Dietrich W. D., and Yezierski R. P. (1998). Traumatic spinal cord injury induces nuclear factor-κB activation. J. Neurosci. 18:3251–3260.PubMedGoogle Scholar
  31. Bharath S., Hsu M., Kaur D., Rajagopalan S., and Andersen J. K. (2002). Glutathione, iron and Parkinson’s disease. Biochem. Pharmacol. 64:1037–1048.PubMedGoogle Scholar
  32. Bi H. and Sze C. I. (2002). N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J. Neurol. Sci. 200:11–18.PubMedGoogle Scholar
  33. Blandini F., Porter R. H., and Greenamyre J. T. (1996). Glutamate and Parkinson’s disease. Mol. Neurobiol. 12:73–94.PubMedGoogle Scholar
  34. Bliss T. V. P. and Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.PubMedGoogle Scholar
  35. Bonilla E. (2000). [Huntington disease. A review]. Invest. Clin. 41:117–141.PubMedGoogle Scholar
  36. Boven L. A., Gomes L., Hery C., Gray F., Verhoef J., Portegies P., Tardieu M., andNottet H. S. L. M. (1999). Increased peroxynitrite activity in AIDS dementia complex: implications for the neuropathogenesis of HIV-1 infection. J. Immunol. 162:4319–4327.PubMedGoogle Scholar
  37. Bradford H. F. and Dodd P. R. (1975). Convulsions and activation of epileptic foci induced by monosodium glutamate and related compounds. Biochem. Pharmacol. 26:253–254.Google Scholar
  38. Bramlett H. M. and Dietrich W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. J. Cereb. Blood Flow Metab. 24:133–150.PubMedGoogle Scholar
  39. Brouillet E. and Beal M. F. (1993). NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. NeuroReport 4:387–390.PubMedGoogle Scholar
  40. Brown D. R. (1999). Prion protein peptide neurotoxicity can be mediated by astrocytes. J. Neurochem. 73:1105–1113.PubMedGoogle Scholar
  41. Brown D. R. (2005). Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol. 43:229–243.PubMedGoogle Scholar
  42. Browne S. E., Bowling A. C., MacGarvey U., Baik M. J., Berger S. C., Muqit M. M., Bird E. D., and Beal M. F. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41:646–653.PubMedGoogle Scholar
  43. Brownson D. M., Mabry T. J., and Leslie S. W. (2002). The cycad neurotoxic amino acid, β-N-methylamino-l-alanine (BMAA), elevates intracellular calcium levels in dissociated rat brain cells. J. Ethnopharmacol. 82:159–167.PubMedGoogle Scholar
  44. Bruyn R. P. M. and Stoof J. C. (1990). The quinolinic acid hypothesis in Huntington’s chorea. J. Neurol. Sci. 95:29–38.PubMedGoogle Scholar
  45. Bullock R., Zauner A., Myseros J. S., Marmarou A., Woodward J. J., and Young H. F. (1995). Evidence for prolonged release of excitatory amino acids in severe human head trauma-Relationship to clinical events. Ann. N. Y. Acad. Sci. 765:290–297.PubMedGoogle Scholar
  46. Burke J. R., Enghild J. J., Martin M. E., Jou Y. S., Myers R. M., Roses A. D., Vance J. M., and Strittmatter W. J. (1996). Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat. Med. 2:347–350.PubMedGoogle Scholar
  47. Burnashev N., Monyer H., Seeburg P. H., and Sakmann B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198.PubMedGoogle Scholar
  48. Butterfield D. A. (2002). Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radical Res. 36:1307–1313.Google Scholar
  49. Calabrese V., Boyd-Kimball D., Scapagnini G., and Butterfield D. A. (2004). Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18:245–267.Google Scholar
  50. Capasso M., Jeng J. M., Malavolta M., Mocchegiani E., and Sensi S. L. (2005). Zinc dyshomeostasis: A key modulator of neuronal injury. J. Alzheimer’s Dis. 8:93–108.Google Scholar
  51. Capellari S., Zaidi S. I. A., Urig C. B., Perry G., Smith M. A., and Petersen R. B. (1999). Prion protein glycosylation is sensitive to redox change. J. Biol. Chem. 274:34846–34850.PubMedGoogle Scholar
  52. Carboni S., Melis F., Pani L., Hadjiconstantinou M., and Rossetti Z. L. (1990). The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP+). Neurosci. Lett. 117: 129–133.PubMedGoogle Scholar
  53. Cepeda C., Ariano M. A., Calvert C. R., Flores-Hernandez J., Chandler S. H., Leavitt B. R., Hayden M. R., and Levine M. S. (2001). NMDA receptor function in mouse models of Huntington disease. J. Neurosci. Res. 66:525–539.PubMedGoogle Scholar
  54. Chabot C., Gagné J., Giguére C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309.PubMedGoogle Scholar
  55. Chandrasekaran A., Ponnambalam G., and Kaur C. (2004). Domoic acid-induced neurotoxicity in the hippocampus of adult rats. Neurotox. Res. 6:105–117.PubMedGoogle Scholar
  56. Chen C. and Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20:157–184.PubMedGoogle Scholar
  57. Chiba K., Trevor A., and Castagnoli N., Jr. (1984). Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 120:574–578.PubMedGoogle Scholar
  58. Chin J. H., Buckholz T. M., and DeLorenzo R. J. (1985). Calmodulin and protein phosphorylation: implications in brain ischemia. Prog. Brain Res. 63:169–184.PubMedGoogle Scholar
  59. Chin P. C., Liu L., Morrison B. E., Siddiq A., Ratan R. R., Bottiglieri T., and D’Mello S. R. (2004). The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt- independent mechanism. J. Neurochem. 90:595–608.PubMedGoogle Scholar
  60. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.Google Scholar
  61. Choi D. W. (1990). Cerebral hypoxia: Some new approaches and unanswered questions. J. Neurosci. 10:2493–2501.PubMedGoogle Scholar
  62. Chung S. Y. and Han S. H. (2003). Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J. Pineal Res. 34:95–102.PubMedGoogle Scholar
  63. Chung H. J., Steinberg J. P., Huganir R. L., and Linden D. J. (2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755.PubMedGoogle Scholar
  64. Collister K. A. and Albensi B. C. (2005). Potential therapeutic targets in the NF-κB pathway for Alzheimer’s disease. Drug News Perspect. 18:623–629.PubMedGoogle Scholar
  65. Copani A., Canonico P. L., Catania M. V., Aronica E., Bruno V., Ratti E., Van Amsterdam F. T. M., Gaviraghi G., and Nicoletti F. (1991). Interaction between β-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res. 558:79–86.PubMedGoogle Scholar
  66. Crocker J. F., Lee S. H., Love J. A., Malatjalian D. A., Renton K. W., Rozee K. R., and Murphy M. G. (1991). Surfactant-potentiated increases in intracranial pressure in a mouse model of Reye’s syndrome. Exp. Neurol. 111:95–97.PubMedGoogle Scholar
  67. De Bock F., Dornand J., and Rondouin G. (1996). Release of TNFalpha in the rat hippocampus following epileptic seizures and excitotoxic neuronal damage. NeuroReport 7:1125–1129.PubMedGoogle Scholar
  68. Deininger M. H., Bekure-Nemariam K., Trautmann K., Morgalla M., Meyermann R., and Schluesener H. J. (2003). Cyclooxygenase-1 and -2 in brains of patients who died with sporadic Creutzfeldt-Jakob disease. J. Mol. Neurosci. 20:25–30.PubMedGoogle Scholar
  69. Demediuk P., Daly M. P., and Faden A. I. (1988). Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans. Am. Soc. Neurochem. 19:176.Google Scholar
  70. Dewar D., Chalmers D. T., Shand A., Graham D. I., and McCulloch J. (1990). Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum. Ann. Neurol. 28:805–810.PubMedGoogle Scholar
  71. Dewar D., Chalmers D. T., Graham D. I., and McCulloch J. (1991). Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: an autoradiographic study of the hippocampus. Brain Res. 553:58–64.PubMedGoogle Scholar
  72. Dhillon H. S., Donaldson D., Dempsey R. J., and Prasad M. R. (1994). Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J. Neurotrauma 11:405–415.PubMedGoogle Scholar
  73. Doble A. (1999). The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81:163–221.PubMedGoogle Scholar
  74. Doh-ura K., Iwaki T., and Caughey B. (2000). Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol. 74:4894–4897.PubMedGoogle Scholar
  75. Drachman D. B. and Rothstein J. D. (2000). Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann. Neurol. 48:792–795.PubMedGoogle Scholar
  76. Drachman D. B., Frank K., Dykes-Hoberg M., Teismann P., Almer G., Przedborski S., and Rothstein J. D. (2002). Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol. 52:771–778.PubMedGoogle Scholar
  77. Dreyer E. B. and Lipton S. A. (1995). The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur. J. Neurosci. 7:2502–2507.PubMedGoogle Scholar
  78. Edgar A. D., Strosznajder J., and Horrocks L. A. (1982). Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.PubMedGoogle Scholar
  79. Ellis R. C., Earnhardt J. N., Hayes R. L., Wang K. K. W., and Anderson D. K. (2004). Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J. Neurochem. 88:689–697.PubMedGoogle Scholar
  80. Faden A. I. and Simon R. P. (1988). A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann. Neurol. 23:623–626.PubMedGoogle Scholar
  81. Famularo G., Moretti S., Alesse E., Trinchieri V., Angelucci A., Santini G., Cifone G., and De Simone C. (1999). Reduction of glutamate levels in HIV-infected subjects treated with acetylcarnitine. J. NeuroAIDS 2:65–73.PubMedGoogle Scholar
  82. Fan M. M. and Raymond L. A. (2007). N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol. 81:272–293.PubMedGoogle Scholar
  83. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  84. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  85. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedGoogle Scholar
  86. Farooqui A. A. and Horrocks L. A. (2007a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry. Springer, New York, in press. Lajtha, A. (ed.).Google Scholar
  87. Farooqui A. A. and Horrocks L. A. (2007b). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  88. Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.PubMedGoogle Scholar
  89. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.PubMedGoogle Scholar
  90. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000). Brain cytosolic phospholipase A2: Localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  91. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  92. Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem.-Anti-Inflammatory & Anti-Allergy Agents 1:193–204.Google Scholar
  93. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.Google Scholar
  94. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp. 14–29.Google Scholar
  95. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  96. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedGoogle Scholar
  97. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedGoogle Scholar
  98. Feinstein M. B. and Halenda S. P. (1988). Arachidonic acid mobilization in platelets: The possible role of protein kinase C and G-proteins. Experientia 44:101–104.PubMedGoogle Scholar
  99. Fendri C., Mechri A., Khiari G., Othman A., Kerkeni A., and Gaha L. (2006). Implication du stress oxydant dans la physiopathologie de la schizophrénie: revue de la littérature [Oxidative stress involvement in schizophrenia pathophysiology: a review]. L’Encéphale 32:244–252.PubMedGoogle Scholar
  100. Feng Z., Li D., Fung P. C., Pei Z., Ramsden D. B., and Ho S. L. (2003). COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice. NeuroReport 14: 1927–1929.PubMedGoogle Scholar
  101. Fernandes S. P., Edwards T. M., Ng K. T., and Robinson S. R. (2007). HIV-1 protein gp120 rapidly impairs memory in chicks by interrupting the glutamate-glutamine cycle. Neurobiol. Learn. Mem. 87:1–8.PubMedGoogle Scholar
  102. Ferrarese C., Aliprandi A., Tremolizzo L., Stanzani L., De Micheli A., Dolara A., and Frattola L. (2001). Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57:671–675.PubMedGoogle Scholar
  103. Finiels-Marlier F., Marini A. M., Williams P., and Paul S. M. (1993). The N-methyl-D-aspartate antagonist MK-801 fails to protect dopaminergic neurons from 1-methyl-4-phenylpyridinium toxicity in vitro. J. Neurochem. 60:1968–1971.PubMedGoogle Scholar
  104. Fiskum G., Murphy A. N., and Beal M. F. (1999). Mitochondria in neurodegeneration: Acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab 19:351–369.PubMedGoogle Scholar
  105. Frederickson C. J., Maret W., and Cuajungco M. P. (2004). Zinc and excitotoxic brain injury: a new model. Neuroscientist 10:18–25.PubMedGoogle Scholar
  106. Frolich L. and Hoyer S. (2002). The etiological and pathogenetic heterogeneity of Alzheimer’s disease. Nervenarzt 73:422–427.PubMedGoogle Scholar
  107. Gabriel C., Justicia C., Camins A., and Planas A. M. (1999). Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65:61–69.PubMedGoogle Scholar
  108. Gally J. A., Montague P. R., Reeke G. N., Jr., and Edelman G. M. (1990). The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. USA 87:3547–3551.PubMedGoogle Scholar
  109. Gould T. D., Chen G., and Manji H. K. (2002). Mood stabilizer psychopharmacology. Clin. Neurosci. Res. 2:193–212.Google Scholar
  110. Gras G., Chrétien F., Vallat-Decouvelaere A. V., Le Pavec G., Porcheray F., Bossuet C., Léone C., Mialocq P., Dereuddre-Bosquet N., Clayette P., Le Grand R., Créminon C., Dormont D., Rimaniol A. C., and Gray F. (2003). Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 13:211–222.PubMedGoogle Scholar
  111. Greenamyre J. T. and Young A. B. (1989). Excitatory amino acids and Alzheimer’s disease. Neurobiol. Aging 10:593–602.PubMedGoogle Scholar
  112. Greenamyre J. T., Penney J. B., D’Amato C. J., and Young A. B. (1987). Dementia of the Alzheimer’s type: Changes in hippocampal L-[3H]glutamate binding. J. Neurochem. 48:543–551.PubMedGoogle Scholar
  113. Griffiths T., Evans M. C., and Meldrum B. S. (1983). Temporal lobe epilepsy, excitotoxins and the mechanism of selective neuronal loss. In: Fuxe K., Roberts P., and Schwarcz R. (eds.), Excitotoxins. Macmillan Publ. Co. Inc., New York, pp. 331–342.Google Scholar
  114. Haba K., Ogawa N., Mizukawa K., and Mori A. (1991). Time course of changes in lipid peroxidation, pre- and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res. 540:116–122.PubMedGoogle Scholar
  115. Haddad J. J. (2004). Mitogen-activated protein kinases and the evolution of Alzheimer’s: a revolutionary neurogenetic axis for therapeutic intervention? Prog. Neurobiol. 73:359–377.PubMedGoogle Scholar
  116. Halpain S., Girault J.-A., and Greengard P. (1990). Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369–372.PubMedGoogle Scholar
  117. Hang C. H., Chen G., Shi J. X., Zhang X., and Li J. S. (2006). Cortical expression of nuclear factor κB after human brain contusion. Brain Res. 1109:14–21.PubMedGoogle Scholar
  118. Hao Q. and Maret W. (2005). Imbalance between pro-oxidant and pro-antioxidant functions of zinc in disease. J. Alzheimer’s Dis. 8:161–170.Google Scholar
  119. Hardin-Pouzet H., Krakowski M., Bourbonnière L., Didier-Bazes M., Tran E., and Owens T. (1997). Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20:79–85.PubMedGoogle Scholar
  120. Hattori H. and Wasterlain C. G. (1990). Excitatory amino acids in the developing brain: ontogeny, plasticity, and excitotoxicity. Pediatr. Neurol. 6:219–228.PubMedGoogle Scholar
  121. Hayes R. L., Jenkins L. W., and Lyeth B. G. (1992). Neurotransmitter-mediated mechanisms of traumatic brain injury: Acetylcholine and excitatory amino acids. J. Neurotrauma 9:S173-S187.PubMedGoogle Scholar
  122. Hayes K. C., Hull T. C., Delaney G. A., Potter P. J., Sequeira K. A., Campbell K., and Popovich P. G. (2002). Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J. Neurotrauma 19:753–761.PubMedGoogle Scholar
  123. Heyes M. P., Swartz K. J., Markey S. P., and Beal M. F. (1991). Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s disease. Neurosci. Lett. 122:265–269.PubMedGoogle Scholar
  124. Hill I. E., MacManus J. P., Rasquinha I., and Tuor U. I. (1995). DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res. 676:398–403.PubMedGoogle Scholar
  125. Hill K. E., Zollinger L. V., Watt H. E., Carlson N. G., and Rose J. W. (2004). Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J. Neuroimmunol. 151:171–179.PubMedGoogle Scholar
  126. Hoffman S. W., Rzigalinski B. A., Willoughby K. A., and Ellis E. F. (2000). Astrocytes generate isoprostanes in response to trauma or oxygen radicals. J. Neurotrauma 17:415–420.PubMedGoogle Scholar
  127. Homayoun P., Rodriguez de Turco E. B., Parkins N. E., Lane D. C., Soblosky J., Carey M. E., and Bazan N. G. (1997). Delayed phospholipid degradation in rat brain after traumatic brain injury. J. Neurochem. 69:199–205.PubMedGoogle Scholar
  128. Hume R. I., Dingledine R., and Heinemann S. F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031.PubMedGoogle Scholar
  129. Ikonomidou C. and Turski L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1:383–386.PubMedGoogle Scholar
  130. Ince P. G. and Codd G. A. (2005). Return of the cycad hypothesis-does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol. Appl. Neurobiol. 31:345–353.PubMedGoogle Scholar
  131. Izquierdo I. and Medina J. H. (1995). Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Mem. 63:19–32.PubMedGoogle Scholar
  132. Jenner P. and Olanow C. W. (2006). The pathogenesis of cell death in Parkinson’s disease. Neurology 66:S24-S36.PubMedGoogle Scholar
  133. Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: Reactive oxygen species-Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.PubMedGoogle Scholar
  134. Kajiwara K., Nagawawa H., Shimizu-Nishikawa S., Ookuri T., Kimura M., and Sugaya E. (1996). Molecular characterization of seizure-related genes isolated by differential screening. Biochem. Biophys. Res. Commun. 219:795–799.PubMedGoogle Scholar
  135. Kalaria R. N., Harshbarger-Kelly M., Cohen D. L., and Premkumar D. R. D. (1996). Molecular aspects of inflammatory and immune responses in Alzheimer’s disease. Neurobiol. Aging 17:687–693.PubMedGoogle Scholar
  136. Kamat J. P. (2006). Peroxynitrite: A potent oxidizing and nitrating agent. Indian J. Exp. Biol. 44:436–447.PubMedGoogle Scholar
  137. Katayama Y., Shimizu J., Suzuki S., Memezawa H., Kashiwagi F., Kamiya T., and Terashi A. (1990). Role of arachidonic acid metabolism on ischemic brain edema and metabolism. Adv. Neurol. 52:105–108.PubMedGoogle Scholar
  138. Katsuki H., Tomita M., Takenaka C., Shirakawa H., Shimazu S., Ibi M., Kume T., Kaneko S., and Akaike A. (2001). Superoxide dismutase activity in organotypic midbrain-striatum co-cultures is associated with resistance of dopaminergic neurons to excitotoxicity. J. Neurochem. 76:1336–1345.PubMedGoogle Scholar
  139. Kauer J. A. and Malenka R. C. (2006). LTP: AMPA receptors trading places. Nat. Neurosci. 9: 593–594.PubMedGoogle Scholar
  140. Kaul M. and Lipton S. A. (2006). Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr. HIV. Res. 4:307–318.PubMedGoogle Scholar
  141. Kawahara Y., Ito K., Sun H., Ito M., Kanazawa I., and Kwak S. (2004). GluR4c, an alternative splicing isoform of GluR4, is abundantly expressed in the adult human brain. Brain Res. Mol. Brain Res. 127:150–155.PubMedGoogle Scholar
  142. Kawahara Y., Sun H., Ito K., Hideyama T., Aoki M., Sobue G., Tsuji S., and Kwak S. (2006). Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA. Neurosci. Res. 54:11–14.PubMedGoogle Scholar
  143. Kerwin R., Patel S., and Meldrum B. (1990). Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32.PubMedGoogle Scholar
  144. Kim S. H., Engelhardt J. I., Henkel J. S., Siklos L., Soos J., Goodman C., and Appel S. H. (2004). Widespread increased expression of the DNA repair enzyme PARP in brain in ALS. Neurology 62:319–322.PubMedGoogle Scholar
  145. Klivenyi P., Beal M. F., Ferrante R. J., Andreassen O. A., Wermer M., Chin M. R., andBonventre J. V. (1998). Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J. Neurochem. 71:2634–2637.PubMedGoogle Scholar
  146. Klussmann S. and Martin-Villalba A. (2005). Molecular targets in spinal cord injury. J. Mol. Med. 83:657–671.PubMedGoogle Scholar
  147. Koh J.-Y., Yang L. L., and Cotman C. W. (1990). β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533:315–320.PubMedGoogle Scholar
  148. Konradi C. and Heckers S. (2003). Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther. 97:153–179.PubMedGoogle Scholar
  149. Kontush A. (2001). Amyloid-beta: An antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer’s disease. Free Radical Biol. Med. 31:1120–1131.Google Scholar
  150. Korth C., May B. C., Cohen F. E., and Prusiner S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA 98:9836–9841.PubMedGoogle Scholar
  151. Kuner R., Groom A. J., Bresink I., Kornau H. C., Stefovska V., Müller G., Hartmann B., Tschauner K., Waibel S., Ludolph A. C., Ikonomidou C., Seeburg P. H., and Turski L. (2005). Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc. Natl. Acad. Sci. U. S. A 102:5826–5831.PubMedGoogle Scholar
  152. Kwak S. and Kawahara Y. (2005). Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J. Mol. Med. 83:110–120.PubMedGoogle Scholar
  153. Larm J. A., Beart P. M., and Cheung N. S. (1997). Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurones. Neurochem. Int. 31:677–682.PubMedGoogle Scholar
  154. Lea P. M. and Faden A. I. (2001). Traumatic brain injury: developmental differences in glutamate receptor response and the impact on treatment. Ment. Retard. Dev. Disabil. Res. Rev. 7:235–248.PubMedGoogle Scholar
  155. Lee H. G., Casadesus G., Zhu X. W., Takeda A., Perry G., and Smith M. A. (2004). Challenging the amyloid cascade hypothesis - Senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. In: DeGrey A. D. N. (ed.), Strategies for Engineered Negligible Senescence: Why Genuine Control of Aging May Be Foreseeable. Annals of the New York Academy of Sciences New York Acad Sciences, pp. 1–4.Google Scholar
  156. Leker R. R. and Shohami E. (2002). Cerebral ischemia and trauma - different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 39:55–73.PubMedGoogle Scholar
  157. Li S. and Stys P. K. (2000). Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J. Neurosci. 20:1190–1198.PubMedGoogle Scholar
  158. Li Y., Maher P., and Schubert D. (1997). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463.PubMedGoogle Scholar
  159. Li L., Murphy T. H., Hayden M. R., and Raymond L. A. (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J. Neurophysiol. 92:2738–2746.PubMedGoogle Scholar
  160. Liddle P. F. (1987). The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. Br. J. Psychiatry 151:145–151.PubMedGoogle Scholar
  161. Linden D. J. and Routtenberg A. (1989). The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Rev. 14:279–296.PubMedGoogle Scholar
  162. Lipton S. A. (1998). Neuronal injury associated with HIV-1: approaches to treatment. Annu. Rev. Pharmacol. Toxicol. 38:159–177.PubMedGoogle Scholar
  163. Liu Z., Stafstrom C. E., Sarkisian M. R., Yang Y., Hori A., Tandon P., and Holmes G. L. (1997). Seizure-induced glutamate release in mature and immature animals: an in vivo microdialysis study. NeuroReport 8:2019–2023.PubMedGoogle Scholar
  164. Love S. (1999). Oxidative stress in brain ischemia. Brain Pathol. 9:119–131.PubMedGoogle Scholar
  165. Lue L. F., Brachova L., Civin W. H., and Rogers J. (1996). Inflammation, Abeta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55:1083–1088.PubMedGoogle Scholar
  166. MacDonald A. W. I. and Chafee M. V. (2006). Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev. Psychopathol. 18:853–876.PubMedGoogle Scholar
  167. Mahadik S. P. and Mukherjee S. (1996). Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr. Res. 19:1–17.PubMedGoogle Scholar
  168. Mahadik S. P. and Scheffer R. E. (1996). Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids 55:45–54.PubMedGoogle Scholar
  169. Masliah E., Alford M., DeTeresa R., Mallory M., and Hansen L. (1996). Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol. 40:759–766.PubMedGoogle Scholar
  170. Masliah E., Alford M., Galasko D., Salmon D., Hansen L. A., Good P. F., Perl D. P., and Thal L. (2001). Cholinergic deficits in the brains of patients with parkinsonism-dementia complex of Guam. NeuroReport 12:3901–3903.PubMedGoogle Scholar
  171. Massicotte G. (2000). Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol. Life Sci. 57:1542–1550.PubMedGoogle Scholar
  172. Matarredona E. R., Santiago M., Venero J. L., Cano J., and Machado A. (2001). Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J. Neurochem. 76:351–360.PubMedGoogle Scholar
  173. Mattson M. P. (1990). Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 2:105–117.Google Scholar
  174. Mattson M. P. (2002). Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J. Neurovirol. 8:539–550.PubMedGoogle Scholar
  175. Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.PubMedGoogle Scholar
  176. May B. C. H., Fafarman A. T., Hong S. B., Rogers M., Deady L. W., Prusiner S. B., and Cohen F. E. (2003). Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl. Acad. Sci. USA 100:3416–3421.PubMedGoogle Scholar
  177. Mayer A. M. S., Hall M., Fay M. J., Lamar P., Pearson C., Prozialeck W. C., Lehmann V. K. B., Jacobson P. B., Romanic A. M., Uz T., and Manev H. (2001). Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia. BMC Pharmacol. 1:7.PubMedGoogle Scholar
  178. McDonald J. W., Garofalo E. A., Hood T., Sackellares C., Gilman S., McKeever P. E., Troncoso J. C., and Johnston M. V. (1991). Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann. Neurol. 29:529–541.PubMedGoogle Scholar
  179. McDonald J. W., Levine J. M., and Qu Y. (1998). Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. NeuroReport 9:2757–2762.PubMedGoogle Scholar
  180. McGeer E. G. and McGeer P. L. (1998). The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol. 33:371–378.PubMedGoogle Scholar
  181. McIntosh T. K., Saatman K. E., Raghupathi R., Graham D. I., Smith D. H., Lee V. M., and Trojanowski J. Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.PubMedGoogle Scholar
  182. McNaught K. S. P., Jackson T., Jnobaptiste R., Kapustin A., and Olanow C. W. (2006). Proteasomal dysfunction in sporadic Parkinson’s disease. Neurology 66:S37-S49.PubMedGoogle Scholar
  183. Meador-Woodruff J. H., Davis K. L., and Haroutunian V. (2001). Abnormal kainate receptor expression in prefrontal cortex in schizophrenia. Neuropsychopharmacology 24:545–552.PubMedGoogle Scholar
  184. Meldrum B. S. (1993). Excitotoxicity and selective neuronal loss in epilepsy. Brain Pathol. 3:405–412.PubMedGoogle Scholar
  185. Meldrum B. S. (2002). Implications for neuroprotective treatments. In: Sutula T. and Pitkanen A. (eds.), Do Seizures Damage the Brain. Perspectives in Analytical Philosophy, Elsevier Science BV, Amsterdam, pp. 487–495.Google Scholar
  186. Ménard C., Valastro B., Martel M. A., Chartier T., Marineau A., Baudry M., and Massicotte G. (2005). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities. Hippocampus 15:370–380.PubMedGoogle Scholar
  187. Milakovic T., Quintanilla R. A., and Johnson G. V. (2006). Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J. Biol. Chem. 281:34785–34795.PubMedGoogle Scholar
  188. Ming Y., Zhang H., Long L., Wang F., Chen J., and Zhen X. (2006). Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J. Neurochem. 98:1316–1323.PubMedGoogle Scholar
  189. Minghetti L., Greco A., Cardone F., Puopolo M., Ladogana A., Almonti S., Cunningham C., Perry V. H., Pocchiari M., and Levi G. (2000). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J. Neuropathol. Exp. Neurol. 59:866–871.PubMedGoogle Scholar
  190. Moreira P. I., Oliveira C. R., Santos M. S., Nunomura A., Honda K., Zhu X. W., Smith M. A., and Perry G. (2005a). A second look into the oxidant mechanisms in Alzheimer’s disease. Curr. Neurovasc. Res. 2:179–184.Google Scholar
  191. Moreira P. L., Smith M. A., Zhu X. W., Honda K., Lee H. G., Aliev G., and Perry G. (2005b). Oxidative damage and Alzheimer’s disease: Are antioxidant therapies useful? Drug News Perspect. 18:13–19.Google Scholar
  192. Morishita W., Marie H., and Malenka R. C. (2005). Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat. Neurosci. 8:1043–1050.PubMedGoogle Scholar
  193. Muller N. and Schwarz M. (2006). Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res. 10:131–148.PubMedGoogle Scholar
  194. Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 77–92.Google Scholar
  195. Murch S. J., Cox P. A., and Banack S. A. (2004). A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc. Natl. Acad. Sci. USA 101:12228–12231.PubMedGoogle Scholar
  196. Murphy T. H., Miyamoto M., Sastre A., Schnaar R. L., and Coyle J. T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558.PubMedGoogle Scholar
  197. Murphy P., Sharp A., Shin J., Gavrilyuk V., Dello R. C., Weinberg G., Sharp F. R., Lu A., Heneka M. T., and Feinstein D. L. (2002). Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 67:461–470.PubMedGoogle Scholar
  198. Nadi N. S., Wyler A. R., and Porter R. J. (1987). Amino acids and catecholamines in the epileptic focus from the human brain. Neurology 37:106.Google Scholar
  199. Nakagawa Y., Kurihara K., Sugiura T., and Waku K. (1985). Heterogeneity in the metabolism of the arachidonoyl molecular species of glycerophospholipids of rabbit alveolar macrophages. The relationship between metabolic activities and chemical structures of the arachidonoyl molecular species. Eur. J. Biochem. 153:263–268.PubMedGoogle Scholar
  200. New D. R., Maggirwar S. B., Epstein L. G., Dewhurst S., and Gelbard H. A. (1998). HIV-1 Tat induces neuronal death via tumor necrosis factor-α and activation of non-N-methyl-D-aspartate receptors by a NFκB-independent mechanism. J. Biol. Chem. 273:17852–17858.PubMedGoogle Scholar
  201. Novelli A., Nicoletti F., Wroblewski J. T., Alho H., Costa A. E., and Guidotti A. (1987). Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells. J. Neurosci. 7:40–47.PubMedGoogle Scholar
  202. Numazawa S., Ishikawa M., Yoshida A., Tanaka S., and Yoshida T. (2003). Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J. Physiol. Cell Physiol. 285:C334-C342.PubMedGoogle Scholar
  203. Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.PubMedGoogle Scholar
  204. Okuno T., Nakatsuji Y., Kumanogoh A., Koguchi K., Moriya M., Fujimura H., Kikutani H., and Sakoda S. (2004). Induction of cyclooxygenase-2 in reactive glial cells by the CD40 pathway: relevance to amyotrophic lateral sclerosis. J. Neurochem. 91:404–412.PubMedGoogle Scholar
  205. Olney J. W. and Farber N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatr. 52:998–1007.PubMedGoogle Scholar
  206. Olney J. W., Wozniak D. F., and Farber N. B. (1997). Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch. Neurol. 54:1234–1240.PubMedGoogle Scholar
  207. Ong W. Y. and Farooqui A. A. (2005). Iron, neuroinflammation, and Alzheimer’s disease. J. Alzheimer’s Dis. 8:183–200.Google Scholar
  208. Pabst S., Hazzard J. W., Antonin W., Sudhof T. C., Jahn R., Rizo J., and Fasshauer D. (2000). Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275:19808–19818.PubMedGoogle Scholar
  209. Pan W., Kastin A. J., Bell R. L., and Olson R. D. (1999). Upregulation of tumor necrosis factor α transport across the blood-brain barrier after acute compressive spinal cord injury. J. Neurosci. 19:3649–3655.PubMedGoogle Scholar
  210. Panter S. S., Yum S. W., and Faden A. I. (1990). Alteration in extracellular amino acids after traumatic spinal cord injury. Ann. Neurol. 27:96–99.PubMedGoogle Scholar
  211. Park E., Velumian A. A., and Fehlings M. G. (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 21:754–774.PubMedGoogle Scholar
  212. Patrignani P., Tacconelli S., Sciulli M. G., and Capone M. L. (2005). New insights into COX-2 biology and inhibition. Brain Res. Rev. 48:352–359.PubMedGoogle Scholar
  213. Pavel J., Lukácová N., Maršala J., and Maršala M. (2001). The regional changes of the catalytic NOS activity in the spinal cord of the rabbit after repeated sublethal ischemia. Neurochem. Res. 26:833–839.PubMedGoogle Scholar
  214. Penkowa M., Molinero A., Carrasco J., and Hidalgo J. (2001). Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 102:805–818.PubMedGoogle Scholar
  215. Penney J. B., Maragos W. F., Greenamyre J. T., Debowey D. L., Hollingsworth Z., and Young A. B. (1990). Excitatory amino acid binding sites in the hippocampal region of Alzheimer’s disease and other dementias. J. Neurol. Neurosurg. Psychiatr. 53:314–320.PubMedGoogle Scholar
  216. Pereira C. F. M. and Resende de Oliveira C. (2000). Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular Ca2+ homeostasis. Neurosci. Res. 37:227–236.PubMedGoogle Scholar
  217. Peterson C. and Goldman J. E. (1986). Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc. Natl. Acad. Sci. USA 83:2758–2762.PubMedGoogle Scholar
  218. Peterson C., Gibson G. E., and Blass J. P. (1985). Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. New Eng. J. Med. 312:1063–1069.PubMedGoogle Scholar
  219. Phillis J. W. and O’Regan M. H. (1996). Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res. 730:150–164.PubMedGoogle Scholar
  220. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  221. Pitt D., Werner P., and Raine C. S. (2000). Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6:67–70.PubMedGoogle Scholar
  222. Porcheray F., Léone C., Samah B., Rimaniol A. C., Dereuddre-Bosquet N., and Gras G. (2006). Glutamate metabolism in HIV-infected macrophages: implications for the CNS. Am. J. Physiol. Cell Physiol. 291:C618-C626.PubMedGoogle Scholar
  223. Prusiner S. B. (2001). Shattuck lecture - Neurodegenerative diseases and prions. New Eng. J. Med. 344:1516–1526.PubMedGoogle Scholar
  224. Qiu S. and Curras-Collazo M. C. (2006). Histopathological and molecular changes produced by hippocampal microinjection of domoic acid. Neurotoxicol. Teratol. 28:354–362.PubMedGoogle Scholar
  225. Qiu S., Pak C. W., and Curras-Collazo M. C. (2006). Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: effect of multiple dose/duration paradigms, chronological age, and repeated exposure. Toxicol. Sci. 89:243–256.PubMedGoogle Scholar
  226. Ramsay R. R., Krueger M. J., Youngster S. K., Gluck M. R., Casida J. E., and Singer T. P. (1991). Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase. J. Neurochem. 56:1184–1190.PubMedGoogle Scholar
  227. Rao S. D. and Weiss J. H. (2004). Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 27:17–23.PubMedGoogle Scholar
  228. Ray S. K., Hogan E. L., and Banik N. L. (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res. Rev. 42:169–185.PubMedGoogle Scholar
  229. Reynolds I. J., Hoyt K. R., White J., and Stout A. K. (1996). Intracellular signalling in glutamate excitotoxicity. In: Fiskum G. (ed.), Neurodegenerative Diseases. Plenum Press, New York, pp. 1–7.Google Scholar
  230. Riederer P. and Hoyer S. (2006). From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J. Neural Transm. 113:1671–1677.PubMedGoogle Scholar
  231. Rodríguez A., Freixes M., Dalfó E., Martín M., Puig B., and Ferrer I. (2005). Metabotropic glutamate receptor phospholipase C pathway: A vulnerable target to Creutzfeldt-Jakob disease in the cerebral cortex. Neuroscience 131:825–832.PubMedGoogle Scholar
  232. Rojas C. V., Martinez J. I., Flores I., Hoffman D. R., and Uauy R. (2003). Gene expression analysis in human fetal retinal explants treated with docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 44:3170–3177.PubMedGoogle Scholar
  233. Rose J. W., Hill K. E., Watt H. E., and Carlson N. G. (2004). Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J. Neuroimmunol. 149:40–49.PubMedGoogle Scholar
  234. Rothstein J. D., Martin L. J., and Kuncl R. W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326:1464–1468.PubMedGoogle Scholar
  235. Rothstein J. D., Van Kammen M., Levey A. I., Martin L. J., and Kuncl R. W. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38:73–84.PubMedGoogle Scholar
  236. Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P., and Welty D. F. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.PubMedGoogle Scholar
  237. Saluja I., O’Regan M. H., Song D. K., and Phillis J. W. (1999). Activation of cPLA2, PKC, and ERKs in the rat cerebral cortex during ischemia/reperfusion. Neurochem. Res. 24:669–677.PubMedGoogle Scholar
  238. Samdani A. F., Dawson T. M., and Dawson V. L. (1997). Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288.PubMedGoogle Scholar
  239. Saunders D. E., Howe F. A., van den Boogaart A., McLean M. A., Griffiths J. R., and Brown M. M. (1995). Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy. Stroke 26:1007–1013.PubMedGoogle Scholar
  240. Scallet A. C., Carp R. I., and Ye X. (2003). Pathophysiology of transmissible spongiform encephalopathies. Curr. Med. Chem. - Immunol. Endo. Metab. Agents 3:171–184.Google Scholar
  241. Schapira A. H. V. (2006). Etiology of Parkinson’s disease. Neurology 66:S10-S23.PubMedGoogle Scholar
  242. Scheuer K., Maras A., Gattaz W. F., Cairns N., Förstl H., and Müller W. E. (1996). Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dementia. 7:210–214.PubMedGoogle Scholar
  243. Schinder A. F., Olson E. C., Spitzer N. C., and Montal M. (1996). Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16:6125–6133.PubMedGoogle Scholar
  244. Schneider A., Martin-Villalba A., Weih F., Vogel J., Wirth T., and Schwaninger M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Med. 5:554–559.PubMedGoogle Scholar
  245. Sebeo J., Hof P. R., and Perl D. P. (2004). Occurrence of α-synuclein pathology in the cerebellum of Guamanian patients with parkinsonism-dementia complex. Acta Neuropathol. (Berl) 107:497–503.Google Scholar
  246. Seidenman K. J., Steinberg J. P., Huganir R., and Malinow R. (2003). Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J. Neurosci. 23:9220–9228.PubMedGoogle Scholar
  247. Shaw P. J. and Ince P. G. (1997). Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J. Neurol. 244 Suppl 2:S3-S14.Google Scholar
  248. Sherwin A., Robitaille Y., and Quesney F. (1988). Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38:920–923.PubMedGoogle Scholar
  249. Shimihama S., Ninomiya H., Saitoh T., Terry R. D., Fukunaga R., Taniguchi T., Fujiwara M., Kimura J., and Kameyama M. (1990). Changes in signal transduction in Alzheimer’s disease. J. Neural Transm. 30:69–78.Google Scholar
  250. Siesjö B. K. (1990). Calcium in the brain under physiological and pathological conditions. Eur. Neurol. 30:3–9.PubMedGoogle Scholar
  251. Siman R. and Noszek J. C. (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287.PubMedGoogle Scholar
  252. Siman R., Noszek J. C., and Kegerise C. (1989). Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J. Neurosci. 9:1579–1590.PubMedGoogle Scholar
  253. Singh I. N., Sullivan P. G., Deng Y., Mbye L. H., and Hall E. D. (2006). Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J. Cereb. Blood Flow Metab. 26:1407–1418.PubMedGoogle Scholar
  254. Siso S., Puig B., Varea R., Vidal E., Acin C., Prinz M., Montrasio F., Badiola J., Aguzzi A., Pumarola M., and Ferrer I. (2002). Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol. (Berl) 103:615–626.Google Scholar
  255. Snyder E. M., Nong Y., Almeida C. G., Paul S., Moran T., Choi E. Y., Nairn A. C., Salter M. W., Lombroso P. J., Gouras G. K., and Greengard P. (2005). Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8:1051–1058.PubMedGoogle Scholar
  256. Solans A., Zambrano A., Rodríguez M., and Barrientos A. (2006). Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum. Mol. Genet. 15:3063–3081.PubMedGoogle Scholar
  257. Spencer S. (2007). Epilepsy: clinical observations and novel mechanisms. Lancet Neurol. 6:14–16.PubMedGoogle Scholar
  258. Srivastava R., Brouillet E., Beal M. F., Storey E., and Hyman B. T. (1993). Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss. Neurobiol. Aging 14:295–301.PubMedGoogle Scholar
  259. St-Gelais F., Ménard C., Congar P., Trudeau L. E., and Massicotte G. (2004). Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 14:319–325.PubMedGoogle Scholar
  260. Stephenson D., Yin T., Smalstig E. B., Hsu M. A., Panetta J., Little S., and Clemens J. (2000). Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia. J. Cereb. Blood Flow Metab 20:592–603.PubMedGoogle Scholar
  261. Stewart L. R., White A. R., Jobling M. F., Needham B. E., Maher F., Thyer J., Beyreuther K., Masters C. L., Collins S. J., and Cappai R. (2001). Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126. J. Neurosci. Res. 65:565–572.PubMedGoogle Scholar
  262. Sucher N. J., Lei S. Z., and Lipton S. A. (1991). Calcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglion cells in culture. Brain Res. 297:297–302.Google Scholar
  263. Sullivan P. G., Springer J. E., Hall E. D., and Scheff S. W. (2004). Mitochondrial uncoupling as a therapeutic target following neuronal injury. J. Bioenerg. Biomembr. 36:353–356.PubMedGoogle Scholar
  264. Sundström E. and Mo L. L. (2002). Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J. Neurotrauma 19:257–266.PubMedGoogle Scholar
  265. Szatkowski M. and Attwell D. (1994). Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17:359–365.PubMedGoogle Scholar
  266. Teismann P., Vila M., Choi D. K., Tieu K., Wu D. C., Jackson-Lewis V., and Przedborski S. (2003). COX-2 and neurodegeneration in Parkinson’s disease. Ann. N. Y. Acad. Sci. 991:272–277.PubMedGoogle Scholar
  267. Terry R. D. and Katzman R. (1983). Senile dementia of the Alzheimer type. Ann. Neurol. 14:497–506.PubMedGoogle Scholar
  268. Tocco G., Shors T. J., Baudry M., and Thompson R. F. (1991). Selective increase of AMPA binding to the AMPA/quisqualate receptor in the hippocampus in response to acute stress. Brain Res. 559:168–171.PubMedGoogle Scholar
  269. Tortarolo M., Veglianese P., Calvaresi N., Botturi A., Rossi C., Giorgini A., Migheli A., and Bendotti C. (2003). Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell. Neurosci. 23:180–192.PubMedGoogle Scholar
  270. Tseng K. Y. and O’Donnell P. (2004). Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J. Neurosci. 24:5131–5139.PubMedGoogle Scholar
  271. Turnbull S., Tabner B. J., Brown D. R., and Allsop D. (2003). Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. NeuroReport 14:1743–1745.PubMedGoogle Scholar
  272. Turski L., Bressler K., Rettig K.-J., Loschmann P.-A., and Wachtel H. (1991). Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349:414–417.PubMedGoogle Scholar
  273. Ulas J. and Cotman C. W. (1993). Excitatory amino acid receptors in schizophrenia. Schizophr. Bull. 19:105–117.PubMedGoogle Scholar
  274. Vincent I. J. and Davies P. (1990). Phosphorylation characteristics of the A68 protein in Alzheimer’s disease. Brain Res. 531:127–135.PubMedGoogle Scholar
  275. Visioli F., Rodriguez de Turco E. B., Kreisman N. R., and Bazan N. G. (1994). Membrane lipid degradation is related to interictal cortical activity in a series of seizures. Metab Brain Dis. 9:161–170.PubMedGoogle Scholar
  276. Viviani B., Corsini E., Binaglia M., Galli C. L., and Marinovich M. (2001). Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience 107:51–58.PubMedGoogle Scholar
  277. Viviani B., Gardoni F., Bartesaghi S., Corsini E., Facchi A., Galli C. L., Di Luca M., and Marinovich M. (2006). Interleukin-1β released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J. Biol. Chem. 281:30212–30222.PubMedGoogle Scholar
  278. Vogtherr M., Grimme S., Elshorst B., Jacobs D. M., Fiebig K., Griesinger C., and Zahn R. (2003). Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J. Med. Chem. 46:3563–3564.PubMedGoogle Scholar
  279. Volterra A., Trotti D., Floridi S., and Racagni G. (1994). Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann. N.Y. Acad. Sci. 738:153–162:153–162.PubMedGoogle Scholar
  280. Walser B., Giordano R. M., and Stebbins C. L. (2006). Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur. J. Appl. Physiol. 97:347–354.PubMedGoogle Scholar
  281. Wang X., Zhong P., Gu Z., and Yan Z. (2003). Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J. Neurosci. 23:9852–9861.PubMedGoogle Scholar
  282. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedGoogle Scholar
  283. Wasterlain C. G., Fujikawa D. G., Penix L., and Sankar R. (1993). Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34:S37-S53.PubMedGoogle Scholar
  284. Wells J. E. A., Rice T. K., Nuttall R. K., Edwards D. R., Zekki H., Rivest S., and Yong V. W. (2003). An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J. Neurosci. 23:10107–10115.PubMedGoogle Scholar
  285. Wenk G. L. (2006). Neuropathologic changes in Alzheimer’s disease: potential targets for treatment. J. Clin. Psychiatry 67 Suppl 3:3–7.Google Scholar
  286. Wenk G. L., Parsons C. G., and Danysz W. (2006). Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav. Pharmacol. 17:411–424.PubMedGoogle Scholar
  287. Wersinger C. and Sidhu A. (2006). An inflammatory pathomechanism for Parkinson’s disease? Curr. Medicinal Chem. 13:591–602.Google Scholar
  288. Winton M. J., Joyce S., Zhukareva V., Practico D., Perl D. P., Galasko D., Craig U., Trojanowski J. Q., and Lee V. M. (2006). Characterization of tau pathologies in gray and white matter of Guam parkinsonism-dementia complex. Acta Neuropathol. (Berl) 111:401–412.Google Scholar
  289. Xu Z., Wang B. R., Wang X., Kuang F., Duan X. L., Jiao X. Y., and Ju G. (2006). ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci. 79:1895–1905.PubMedGoogle Scholar
  290. Yager J. Y. and Thornhill J. A. (1997). The effect of age on susceptibility to hypoxic-ischemic brain damage. Neurosci. Biobehav. Rev. 21:167–174.PubMedGoogle Scholar
  291. Yager J. Y., Shuaib A., and Thornhill J. (1996). The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Brain Res. Dev. Brain Res. 93:143–154.PubMedGoogle Scholar
  292. Yao J. K., Reddy R. D., and Van Kammen D. P. (2001). Oxidative damage and schizophrenia - An overview of the evidence and its therapeutic implications. CNS Drugs 15:287–310.PubMedGoogle Scholar
  293. Yasojima K., Tourtellotte W. W., McGeer E. G., and McGeer P. L. (2001). Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956.PubMedGoogle Scholar
  294. Ye Z. C., Rothstein J. D., and Sontheimer H. (1999). Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J. Neurosci. 19:10767–10777.PubMedGoogle Scholar
  295. Yegin A., Akbas S. H., Ozben T., and Korgun D. K. (2002). Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol. Scand. 106:258–262.PubMedGoogle Scholar
  296. Yi J. H. and Hazell A. S. (2006). Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem. Int. 48:394–403.PubMedGoogle Scholar
  297. Yi J. H., Hoover R., McIntosh T. K., and Hazell A. S. (2006). Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine. J. Neurotrauma 23:86–96.PubMedGoogle Scholar
  298. Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.PubMedGoogle Scholar
  299. Yoshiyama Y., Arai K., and Hattori T. (2001). Enhanced expression of I-κB with neurofibrillary pathology in Alzheimer’s disease. NeuroReport 12:2641–2645.PubMedGoogle Scholar
  300. Yu Z., Zhou D., Cheng G., and Mattson M. P. (2000). Neuroprotective role for the p50 subunit of NF-κB in an experimental model of Huntington’s disease. J. Mol. Neurosci. 15:31–44.PubMedGoogle Scholar
  301. Zafrilla P., Mulero J., Xandri J. M., Santo E., Caravaca G., and Morillas J. M. (2006). Oxidative stress in Alzheimer patients in different stages of the disease. Curr. Medicinal Chem. 13:1075–1083.Google Scholar
  302. Zagulska-Szymczak S., Filipkowski R. K., and Kaczmarek L. (2001). Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem. Int. 38:485–501.PubMedGoogle Scholar
  303. Zeevalk G. D., Bernard L. P., and Nicklas W. J. (1998). Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J. Neurochem. 70:1421–1430.PubMedGoogle Scholar
  304. Zeron M. M., Fernandes H. B., Krebs C., Shehadeh J., Wellington C. L., Leavitt B. R., Baimbridge K. G., Hayden M. R., and Raymond L. A. (2004). Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol. Cell Neurosci. 25:469–479.PubMedGoogle Scholar
  305. Zhang Y. M., Wang H., Li J. R., Dong L., Xu P., Chen W. Z., Neve R. L., Volpe J. J., and Rosenberg P. A. (2006). Intracellular zinc release and ERK phosphorylation are required upstream of 12-lipoxygenase activation in peroxynitrite toxicity to mature rat oligodendrocytes. J. Biol. Chem. 281:9460–9470.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations