Possible Mechanisms of Neural Injury Caused by Glutamate and Its Receptors

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


Reactive Oxygen Species Nitric Oxide NMDA Receptor NADPH Oxidase Neural Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J., Collaco-Moraes Y., and De Belleroche J. (1996). Cyclooxygenase-2 induction in cerebral cortex: An intracellular response to synaptic excitation. J. Neurochem. 66:6–13.PubMedGoogle Scholar
  2. Allen N. J. and Attwell D. (2001). A chemokine-glutamate connection. Nat. Neurosci. 4:676–678.PubMedGoogle Scholar
  3. Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci.S18–S25.Google Scholar
  4. Anrather J., Racchumi G., and Iadecola C. (2006). NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281:5657–5667.PubMedGoogle Scholar
  5. Auger C. and Attwell D. (2000). Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558.PubMedGoogle Scholar
  6. Baichwal V. R. and Baeuerle P. A. (1997). Activate NF-κB or die? Curr. Biol. 7:R94–R96.PubMedGoogle Scholar
  7. Bains J. S. and Shaw C. A. (1997). Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 25:335–358.PubMedGoogle Scholar
  8. Bal-Price A., Matthias A., and Brown G. C. (2002). Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem. 80:73–80.PubMedGoogle Scholar
  9. Bartolomeo A. C., Morris H., and Boast C. A. (1997). Arecoline via miniosmotic pump improves AF64A-impaired radial maze performance in rats: A possible model of Alzheimer’s disease. Neurobiol. Learn. Mem. 68:333–342.PubMedGoogle Scholar
  10. Basta G., Lazzerini G., Del Turco S., Ratto G. M., Schmidt A. M., and De Caterina R. (2005). At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler. Thromb. Vasc. Biol. 25:1401–1407.PubMedGoogle Scholar
  11. Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.Google Scholar
  12. Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Path. 15:159–166.Google Scholar
  13. Bazan N. G. (2005c). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.Google Scholar
  14. Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.PubMedGoogle Scholar
  15. Block M. L. and Hong J. S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.PubMedGoogle Scholar
  16. Bochkov V. N. and Leitinger N. (2003). Anti-inflammatory properties of lipid oxidation products. J. Mol. Med. 81:613–626.PubMedGoogle Scholar
  17. Bondy S. C. and Lee D. K. (1993). Oxidative stress induced by glutamate receptor agonists. Brain Res. 610:229–233.PubMedGoogle Scholar
  18. Chang M. L., Klaidman L. K., and Adams J. D., Jr. (1997). The effects of oxidative stress on in vivo brain GSH turnover in young and mature mice. Mol. Chem. Neuropathol. 30:187–197.PubMedGoogle Scholar
  19. Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.Google Scholar
  20. Chiang N., Serhan C. N., Dahlén S. E., Drazen J. M., Hay D. W., Rovati G. E., Shimizu T., Yokomizo T., and Brink C. (2006). The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58:463–487.PubMedGoogle Scholar
  21. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.Google Scholar
  22. Correale J. and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 251:1304–1316.PubMedGoogle Scholar
  23. Denecker G., Vercammen D., Declercq W., and Vandenabeele P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58:356–370.PubMedGoogle Scholar
  24. Drew P. D., Storer P. D., Xu J. H., and Chavis J. A. (2005). Hormone regulation of microglial cell activation: relevance to multiple sclerosis. Brain Res. Rev. 48:322–327.PubMedGoogle Scholar
  25. Dubovsky S. L., Christiano J., Daniell L. C., Franks R. D., Murphy J., Adler L., Baker N., and Harris R. A. (1989). Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatr. 46:632–638.PubMedGoogle Scholar
  26. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  27. Farooqui A. A. and Horrocks L. A. (1994a). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.Google Scholar
  28. Farooqui A. A. and Horrocks L. A. (1994b). Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.Google Scholar
  29. Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York, in press.Google Scholar
  30. Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.PubMedGoogle Scholar
  31. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.PubMedGoogle Scholar
  32. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  33. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  34. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  35. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedGoogle Scholar
  36. Filbin M. T. (2006). How inflammation promotes regeneration. Nat. Neurosci. 9:715–717.PubMedGoogle Scholar
  37. Fisher A. B., Dodia C., Manevich Y., Chen J. W., and Feinstein S. I. (1999). Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274:21326–21334.PubMedGoogle Scholar
  38. Fitch M. T., Doller C., Combs C. K., Landreth G. E., and Silver J. (1999). Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19:8182–8198.PubMedGoogle Scholar
  39. Fraga C. G., Shigenaga M. K., Park J. W., Degan P., and Ames B. N. (1990). Oxidative damage to DNA during aging: 8-hydroxy-2-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. U. S. A 87:4533–4537.PubMedGoogle Scholar
  40. Franceschini D., Giusti P., and Skaper S. D. (2006). MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures. Eur. J. Pharmacol. 553:18–27.PubMedGoogle Scholar
  41. Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure-function relationships. Curr. Pharmaceut. Design 10:915–921.Google Scholar
  42. Gabriel C., Justicia C., Camins A., and Planas A. M. (1999). Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65:61–69.PubMedGoogle Scholar
  43. Garrido R., Mattson M. P., Hennig B., and Toborek M. (2001). Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76:1395–1403.PubMedGoogle Scholar
  44. Genis P., Jett M., Bernton E. W., Boyle T., Gelbard H. A., Dzenko K., Keane R. W., Resnick L., Mizrachi Y., Volsky D. J., Epstein L. G., and Gendelman H. E. (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J. Exp. Med. 176:1703–1718.PubMedGoogle Scholar
  45. Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J. D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.PubMedGoogle Scholar
  46. Gomes-Leal W., Corkill D. J., Freire M. A., Picanço-Diniz C. W., and Perry V. H. (2004). Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp. Neurol. 190:456–467.PubMedGoogle Scholar
  47. Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.PubMedGoogle Scholar
  48. Griffiths R., Malcolm C., Ritchie L., Frandsen A., Schousboe A., Scott M., Rumsby P., and Meredith C. (1997). Association of c-fos mRNA expression and excitotoxicity in primary cultures of mouse neocortical and cerebellar neurons. J Neurosci. Res. 48:533–542.PubMedGoogle Scholar
  49. Gunasekar P. G., Kanthasamy A. G., Borowitz J. L., and Isom G. E. (1995). NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J. Neurochem. 65:2016–2021.PubMedGoogle Scholar
  50. Halliwell B. (2006). Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97:1634–1658.PubMedGoogle Scholar
  51. Hays S. J. (1998). Therapeutic approaches to the treatment of neuroinflammatory diseases. Curr. Pharm. Des. 4:335–348.PubMedGoogle Scholar
  52. Hermann G. E., Rogers R. C., Bresnahan J. C., and Beattie M. S. (2001). Tumor necrosis factor-α induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol. Dis. 8:590–599.PubMedGoogle Scholar
  53. Hilburger E. W., Conte E. J., McGee D. W., and Tammariello S. P. (2005). Localization of NADPH oxidase subunits in neonatal sympathetic neurons. Neurosci. Lett. 377:16–19.PubMedGoogle Scholar
  54. Hisanaga K., Sagar S. M., and Sharp F. R. (1992). N-methyl-D-aspartate antagonists block fos-like protein expression induced via multiple signaling pathways in cultured cortical neurons. J. Neurochem. 58:1836–1844.PubMedGoogle Scholar
  55. Hosokawa M., Klegeris A., Maguire J., and McGeer P. L. (2003). Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42:417–423.PubMedGoogle Scholar
  56. Imai H. and Nakagawa Y. (2003). Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biol. Med. 34:145–169.Google Scholar
  57. Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: Reactive oxygen species-Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.PubMedGoogle Scholar
  58. Kahlert S., Zundorf G., and Reiser G. (2005). Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J. Neurosci. Res. 79:262–271.PubMedGoogle Scholar
  59. Kaltschmidt B., Uherek M., Wellmann H., Volk B., and Kaltschmidt C. (1999). Inhibition of NF-κB potentiates amyloid β-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96:9409–9414.PubMedGoogle Scholar
  60. Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.PubMedGoogle Scholar
  61. Kim G. M., Xu J., Xu J. M., Song S. K., Yan P., Ku G., Xu X. M., and Hsu C. Y. (2001). Tumor necrosis factor receptor deletion reduces nuclear factor-kappa B activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J. Neurosci. 21:6617–6625.PubMedGoogle Scholar
  62. Kim S. Y., Min D. S., Choi J. S., Choi Y. S., Park H. J., Sung K. W., Kim J., and Lee M. Y. (2004). Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J. Neuropathol. Exp. Neurol. 63:812–820.PubMedGoogle Scholar
  63. Kishida K. T., Pao M., Holland S. M., and Klann E. (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J. Neurochem. 94:299–306.PubMedGoogle Scholar
  64. Koistinaho J. and Hökfelt T. (1997). Altered gene expression in brain ischemia. NeuroReport 8:i–viii.PubMedGoogle Scholar
  65. Lafon-Cazal M., Pietri S., Culcasi M., and Bockaert J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537.PubMedGoogle Scholar
  66. Lambeth J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181–189.PubMedGoogle Scholar
  67. Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.PubMedGoogle Scholar
  68. Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.PubMedGoogle Scholar
  69. Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.PubMedGoogle Scholar
  70. Leitinger N., Watson A. D., Faull K. F., Fogelman A. M., and Berliner J. A. (1997). Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med. Biol. 433:379–382.PubMedGoogle Scholar
  71. Lilienbaum A. and Israel A. (2003). From calcium to NF-kappa B signaling pathways in neurons. Mol. Cell. Biol. 23:2680–2698.PubMedGoogle Scholar
  72. Lin T. N., Wang Q., Simonyi A., Chen J. J., Cheung W. M., He Y. Y., Xu J., Sun A. Y., Hsu C. Y., and Sun G. Y. (2004). Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J. Neurochem. 90:637–645.PubMedGoogle Scholar
  73. Lubin F. D., Johnston L. D., Sweatt J. D., and Anderson A. E. (2005). Kainate mediates nuclear factor-kappa B activation in hippocampus via phosphatidylinositol-3 kinase and extracellular signal-regulated protein kinase. Neuroscience 133:969–981.PubMedGoogle Scholar
  74. Lukiw W. J., Cui J. G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest 115:2774–2783.PubMedGoogle Scholar
  75. Machado F. S., Johndrow J. E., Esper L., Dias A., Bafica A., Serhan C. N., and Aliberti J. (2006). Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature Med. 12:330–334.PubMedGoogle Scholar
  76. Maggirwar S. B., Sarmiere P. D., Dewhurst S., and Freeman R. S. (1998). Nerve growth factor-dependent activation of NF-κB contributes to survival of sympathetic neurons. J. Neurosci. 18:10356–10365.PubMedGoogle Scholar
  77. Manev H., Favaron M., Guidotti A., and Costa E. (1989). Delayed increase in Ca2+ influx elicited by glutamate: Role in neuronal death. Mol. Pharmacol. 36:106–112.PubMedGoogle Scholar
  78. Manev H., Uz T., and Qu T. (1998). Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor. Neurol. Neurosci. 12:81–85.PubMedGoogle Scholar
  79. Marchetti L., Klein M., Schlett K., Pfizenmaier K., and Eisel U. L. M. (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation-Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-κB pathway. J. Biol. Chem. 279:32869–32881.PubMedGoogle Scholar
  80. Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.PubMedGoogle Scholar
  81. Mazière C., Conte M. A., Degonville J., Ali D., and Maziére J. C. (1999). Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFκB. Biochem. Biophys. Res. Commun. 265:116–122.PubMedGoogle Scholar
  82. McIntyre T. M., Zimmerman G. A., and Prescott S. M. (1999). Biologically active oxidized phospholipids. J. Biol. Chem. 274:25189–25192.PubMedGoogle Scholar
  83. McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.PubMedGoogle Scholar
  84. Milatovic D., Gupta R. C., and Dettbarn W. D. (2002). Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330–337.PubMedGoogle Scholar
  85. Minami M., Kuraishi Y., and Satoh M. (1991). Effects of kainic acid on messenger RNA levels of IL-1β, IL-6, TNF-α and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176:593–598.PubMedGoogle Scholar
  86. Minghetti L. and Levi G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54:99–125.PubMedGoogle Scholar
  87. Minghetti L., Ajmone-Cat M. A., De Berardinis M. A., and De Simone R. (2005). Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res. Rev. 48:251–256.PubMedGoogle Scholar
  88. Moses G. S. D., Jensen M. D., Lue L. F., Walker D. G., Sun A. Y., Simonyi A., and Sun G. Y. (2006). Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J. Neuroinflammation 3:28.PubMedGoogle Scholar
  89. Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.PubMedGoogle Scholar
  90. Nakagawa Y. (2004). Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol. Pharm. Bull. 27:956–960.PubMedGoogle Scholar
  91. Nicholas R. S. J., Compston A., and Brown D. R. (2001). Inhibition of tumour necrosis factor-α (TNFα)-induced NF-κB p52 converts the metabolic effects of microglial-derived TNFα on mouse cerebellar neurones to neurotoxicity. J. Neurochem. 76:1431–1438.PubMedGoogle Scholar
  92. Nicotera P. and Leist M. (1997). Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ. 4:435–442.PubMedGoogle Scholar
  93. Nikolova S., Lee Y. S., Lee Y. S., and Kim J. A. (2005). Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 39:1295–1304.PubMedGoogle Scholar
  94. Noda M., Kettenmann H., and Wada K. (2006). Anti-inflammatory effects of kinins via microglia in the central nervous system. Biol. Chem. 387:167–171.PubMedGoogle Scholar
  95. Noh K. M. and Koh J. Y. (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20:RC111.PubMedGoogle Scholar
  96. Norel X. and Brink C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: recent clues. Pharmacol. Ther. 103:81–94.PubMedGoogle Scholar
  97. Ogita K. and Yoneda Y. (1994). Selective potentiation of DNA binding activities of both activator protein 1 and cyclic AMP response element binding protein through in vivo activation of N-methyl-D-aspartate receptor complex in mouse brain. J. Neurochem. 63:525–534.PubMedGoogle Scholar
  98. Ogita K., Kubo M., Nishiyama N., Watanabe M., Nagashima R., and Yoneda Y. (2004). Enhanced binding activity of nuclear antioxidant-response element through possible formation of Nrf2/Fos-B complex after in vivo treatment with kainate in murine hippocampus. Neuropharmacology 46:580–589.PubMedGoogle Scholar
  99. Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.PubMedGoogle Scholar
  100. Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.PubMedGoogle Scholar
  101. Ong W. Y., He Y., Suresh S., and Patel S. C. (1997). Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367.PubMedGoogle Scholar
  102. Ong W. Y., Kumar U., Switzer R. C., Sidhu A., Suresh G., Hu C. Y., and Patel S. C. (2001). Neurodegeneration in Niemann-Pick type C disease mice. Exp. Brain Res. 141:218–231.PubMedGoogle Scholar
  103. O’Riordan K. J., Huang I. C., Pizzi M., Spano P., Boroni F., Egli R., Desai P., Fitch O., Malone L., Ahn H. J., Liou H. C., Sweatt J. D., and Levenson J. M. (2006). Regulation of nuclear factor κB in the hippocampus by group I metabotropic glutamate receptors. J. Neurosci. 26:4870–4879.PubMedGoogle Scholar
  104. Pamplona R., Dalfó E., Ayala V., Bellmunt M. J., Prat J., Ferrer I., and Portero-Otín M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 280:21522–21530.PubMedGoogle Scholar
  105. Paradis É., Clavel S., Julien P., Murthy M. R. V., de Bilbao F., Arsenijevic D., Giannakopoulos P., Vallet P., and Richard D. (2004). Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol. Dis. 15:312–325.PubMedGoogle Scholar
  106. Pennypacker K. R., Thai L., Hong J. S., and McMillian M. K. (1994). Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. J. Neurosci. 14:3998–4006.PubMedGoogle Scholar
  107. Pepicelli O., Fedele E., Berardi M., Raiteri M., Levi G., Greco A., Ajmone-Cat M. A., and Minghetti L. (2005). Cyclo-oxygenase-1 and-2 differently contribute to prostaglandin E-2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus. J. Neurochem. 93:1561–1567.PubMedGoogle Scholar
  108. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  109. Porter N. A., Caldwell S. E., and Mills K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290.PubMedGoogle Scholar
  110. Qin L., Liu Y., Wang T., Wei S. J., Block M. L., Wilson B., Liu B., and Hong J. S. (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279:1415–1421.PubMedGoogle Scholar
  111. Ratan R. R., Murphy T. H., and Baraban J. M. (1994). Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.PubMedGoogle Scholar
  112. Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.PubMedGoogle Scholar
  113. Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P., and Welty D. F. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.PubMedGoogle Scholar
  114. Rundén-Pran E., Tansø R., Haug F. M., Ottersen O. P., and Ring A. (2005). Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation. Neuroscience 136:795–810.PubMedGoogle Scholar
  115. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., and Ichijo H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17:2596–2606.PubMedGoogle Scholar
  116. Salinska E., Danysz W., and Lazarewicz J. W. (2005). The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 43:322–339.PubMedGoogle Scholar
  117. Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.PubMedGoogle Scholar
  118. Schmidt K. N., Amstad P., Cerutti P., and Baeuerle P. A. (1995). The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chemistry & Biology 2:13–22.Google Scholar
  119. Serhan C. N. (2005a). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73:141–162.Google Scholar
  120. Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.Google Scholar
  121. Serhan C. N. and Savill J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunol. 6:1191–1197.Google Scholar
  122. Shi H. L., Liu S. M., Miyake M., and Liu K. J. (2006). Ebselen induced C6 glioma cell death in oxygen and glucose deprivation. Chem. Res. Toxicol. 19:655–660.PubMedGoogle Scholar
  123. Siesjö B. K. (1990). Calcium in the brain under physiological and pathological conditions. Eur. Neurol. 30:3–9.PubMedGoogle Scholar
  124. Strijbos P. J. and Rothwell N. J. (1995). Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J. Neurosci. 15:3468–3474.PubMedGoogle Scholar
  125. Sullivan P. G., Bruce-Keller A. J., Rabchevsky A. G., Christakos S., Clair D. K., Mattson M. P., and Scheff S. W. (1999). Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J. Neurosci. 19:6248–6256.PubMedGoogle Scholar
  126. Sun D., Newman T. A., Perry V. H., and Weller R. O. (2004). Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol. Appl. Neurobiol. 30:374–384.PubMedGoogle Scholar
  127. Szekely A. M., Barbaccia M. L., Alho H., and Costa E. (1989). In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c- fos mRNA expression. Molec. Pharmacol. 35:401–408.Google Scholar
  128. Vaccarino F., Guidotti A., and Costa E. (1987). Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc. Natl. Acad. Sci. USA 84:8707–8711.PubMedGoogle Scholar
  129. van Kuijk F. J. G. M., Sevanian A., Handelman G. J., and Dratz E. A. (1987). A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.Google Scholar
  130. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedGoogle Scholar
  131. Wang J. Y., Wen L. L., Huang Y. N., Chen Y. T., and Ku M. C. (2006). Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.Google Scholar
  132. Williams C. H., Jr., Arscott L. D., Müller S., Lennon B. W., Ludwig M. L., Wang P. F., Veine D. M., Becker K., and Schirmer R. H. (2000). Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem. 267:6110–6117.PubMedGoogle Scholar
  133. Williamson P. and Schlegel R. A. (2002). Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585:53–63.Google Scholar
  134. Wilms H., Rosenstiel P., Sievers J., Deuschl G., Zecca L., and Lucius R. (2003). Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17:500–502.PubMedGoogle Scholar
  135. Witowski J., Ksiazek K., and Jorres A. (2004). Interleukin-17: a mediator of inflammatory responses. Cell Mol. Life Sci. 61:567–579.PubMedGoogle Scholar
  136. Wolf C. M. and Eastman A. (1999). The temporal relationship between protein phosphatase, mitochondrial cytochrome c release, and caspase activation in apoptosis. Exp. Cell Res. 247:505–513.PubMedGoogle Scholar
  137. Wu S. M., Patel D. D., and Pizzo S. V. (1998). Oxidized α2-macroglobulin (α2M) differentially regulates receptor binding by cytokines/growth factors: implications for tissue injury and repair mechanisms in inflammation. J. Immunol. 161:4356–4365.PubMedGoogle Scholar
  138. Yamamoto Y. and Gaynor R. B. (2004). IκB kinases: key regulators of the NF-κB pathway. Trends Biochem. Sci. 29:72–79.PubMedGoogle Scholar
  139. Yedgar S., Cohen Y., and Shoseyov D. (2006). Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim. Biophys. Acta 1761:1373–1382.PubMedGoogle Scholar
  140. Yin H. Y., Morrow J. D., and Porter N. A. (2004). Identification of a novel class of endoperoxides from arachidonate autoxidation. J. Biol. Chem. 279:3766–3776.PubMedGoogle Scholar
  141. Yoneda Y., Ogita K., Azuma Y., Kuramoto N., Manabe T., and Kitayama T. (1999). Predominant expression of nuclear activator protein-1 complex with DNA binding activity following systemic administration of N-methyl-D-aspartate in dentate granule cells of murine hippocampus. Neuroscience 93:19–31.PubMedGoogle Scholar
  142. Yu Z., Zhou D., Bruce-Keller A. J., Kindy M. S., and Mattson M. P. (1999). Lack of the p50 subunit of nuclear factor-κB increases the vulnerability of hippocampal neurons to excitotoxic injury. J. Neurosci. 19:8856–8865.PubMedGoogle Scholar
  143. Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.PubMedGoogle Scholar
  144. Zecca L., Zucca F. A., Wilms H., and Sulzer D. (2003). Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26:578–580.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations