Skip to main content

Possible Mechanisms of Neural Injury Caused by Glutamate and Its Receptors

  • Chapter
Neurochemical Aspects of Excitotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J., Collaco-Moraes Y., and De Belleroche J. (1996). Cyclooxygenase-2 induction in cerebral cortex: An intracellular response to synaptic excitation. J. Neurochem. 66:6–13.

    PubMed  CAS  Google Scholar 

  • Allen N. J. and Attwell D. (2001). A chemokine-glutamate connection. Nat. Neurosci. 4:676–678.

    PubMed  CAS  Google Scholar 

  • Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci.S18–S25.

    Google Scholar 

  • Anrather J., Racchumi G., and Iadecola C. (2006). NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281:5657–5667.

    PubMed  CAS  Google Scholar 

  • Auger C. and Attwell D. (2000). Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558.

    PubMed  CAS  Google Scholar 

  • Baichwal V. R. and Baeuerle P. A. (1997). Activate NF-κB or die? Curr. Biol. 7:R94–R96.

    PubMed  CAS  Google Scholar 

  • Bains J. S. and Shaw C. A. (1997). Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 25:335–358.

    PubMed  CAS  Google Scholar 

  • Bal-Price A., Matthias A., and Brown G. C. (2002). Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem. 80:73–80.

    PubMed  CAS  Google Scholar 

  • Bartolomeo A. C., Morris H., and Boast C. A. (1997). Arecoline via miniosmotic pump improves AF64A-impaired radial maze performance in rats: A possible model of Alzheimer’s disease. Neurobiol. Learn. Mem. 68:333–342.

    PubMed  CAS  Google Scholar 

  • Basta G., Lazzerini G., Del Turco S., Ratto G. M., Schmidt A. M., and De Caterina R. (2005). At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler. Thromb. Vasc. Biol. 25:1401–1407.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    CAS  Google Scholar 

  • Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Path. 15:159–166.

    CAS  Google Scholar 

  • Bazan N. G. (2005c). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.

    CAS  Google Scholar 

  • Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.

    PubMed  CAS  Google Scholar 

  • Block M. L. and Hong J. S. (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76:77–98.

    PubMed  CAS  Google Scholar 

  • Bochkov V. N. and Leitinger N. (2003). Anti-inflammatory properties of lipid oxidation products. J. Mol. Med. 81:613–626.

    PubMed  CAS  Google Scholar 

  • Bondy S. C. and Lee D. K. (1993). Oxidative stress induced by glutamate receptor agonists. Brain Res. 610:229–233.

    PubMed  CAS  Google Scholar 

  • Chang M. L., Klaidman L. K., and Adams J. D., Jr. (1997). The effects of oxidative stress on in vivo brain GSH turnover in young and mature mice. Mol. Chem. Neuropathol. 30:187–197.

    PubMed  CAS  Google Scholar 

  • Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.

    CAS  Google Scholar 

  • Chiang N., Serhan C. N., Dahlén S. E., Drazen J. M., Hay D. W., Rovati G. E., Shimizu T., Yokomizo T., and Brink C. (2006). The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58:463–487.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.

    Google Scholar 

  • Correale J. and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 251:1304–1316.

    PubMed  Google Scholar 

  • Denecker G., Vercammen D., Declercq W., and Vandenabeele P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58:356–370.

    PubMed  CAS  Google Scholar 

  • Drew P. D., Storer P. D., Xu J. H., and Chavis J. A. (2005). Hormone regulation of microglial cell activation: relevance to multiple sclerosis. Brain Res. Rev. 48:322–327.

    PubMed  CAS  Google Scholar 

  • Dubovsky S. L., Christiano J., Daniell L. C., Franks R. D., Murphy J., Adler L., Baker N., and Harris R. A. (1989). Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatr. 46:632–638.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994a). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994b). Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York, in press.

    Google Scholar 

  • Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Filbin M. T. (2006). How inflammation promotes regeneration. Nat. Neurosci. 9:715–717.

    PubMed  CAS  Google Scholar 

  • Fisher A. B., Dodia C., Manevich Y., Chen J. W., and Feinstein S. I. (1999). Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274:21326–21334.

    PubMed  CAS  Google Scholar 

  • Fitch M. T., Doller C., Combs C. K., Landreth G. E., and Silver J. (1999). Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19:8182–8198.

    PubMed  CAS  Google Scholar 

  • Fraga C. G., Shigenaga M. K., Park J. W., Degan P., and Ames B. N. (1990). Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. U. S. A 87:4533–4537.

    PubMed  CAS  Google Scholar 

  • Franceschini D., Giusti P., and Skaper S. D. (2006). MEK inhibition exacerbates ischemic calcium imbalance and neuronal cell death in rat cortical cultures. Eur. J. Pharmacol. 553:18–27.

    PubMed  CAS  Google Scholar 

  • Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure-function relationships. Curr. Pharmaceut. Design 10:915–921.

    CAS  Google Scholar 

  • Gabriel C., Justicia C., Camins A., and Planas A. M. (1999). Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65:61–69.

    PubMed  CAS  Google Scholar 

  • Garrido R., Mattson M. P., Hennig B., and Toborek M. (2001). Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76:1395–1403.

    PubMed  CAS  Google Scholar 

  • Genis P., Jett M., Bernton E. W., Boyle T., Gelbard H. A., Dzenko K., Keane R. W., Resnick L., Mizrachi Y., Volsky D. J., Epstein L. G., and Gendelman H. E. (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J. Exp. Med. 176:1703–1718.

    PubMed  CAS  Google Scholar 

  • Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J. D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.

    PubMed  CAS  Google Scholar 

  • Gomes-Leal W., Corkill D. J., Freire M. A., Picanço-Diniz C. W., and Perry V. H. (2004). Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp. Neurol. 190:456–467.

    PubMed  CAS  Google Scholar 

  • Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.

    PubMed  Google Scholar 

  • Griffiths R., Malcolm C., Ritchie L., Frandsen A., Schousboe A., Scott M., Rumsby P., and Meredith C. (1997). Association of c-fos mRNA expression and excitotoxicity in primary cultures of mouse neocortical and cerebellar neurons. J Neurosci. Res. 48:533–542.

    PubMed  CAS  Google Scholar 

  • Gunasekar P. G., Kanthasamy A. G., Borowitz J. L., and Isom G. E. (1995). NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J. Neurochem. 65:2016–2021.

    PubMed  CAS  Google Scholar 

  • Halliwell B. (2006). Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97:1634–1658.

    PubMed  CAS  Google Scholar 

  • Hays S. J. (1998). Therapeutic approaches to the treatment of neuroinflammatory diseases. Curr. Pharm. Des. 4:335–348.

    PubMed  CAS  Google Scholar 

  • Hermann G. E., Rogers R. C., Bresnahan J. C., and Beattie M. S. (2001). Tumor necrosis factor-α induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol. Dis. 8:590–599.

    PubMed  CAS  Google Scholar 

  • Hilburger E. W., Conte E. J., McGee D. W., and Tammariello S. P. (2005). Localization of NADPH oxidase subunits in neonatal sympathetic neurons. Neurosci. Lett. 377:16–19.

    PubMed  CAS  Google Scholar 

  • Hisanaga K., Sagar S. M., and Sharp F. R. (1992). N-methyl-D-aspartate antagonists block fos-like protein expression induced via multiple signaling pathways in cultured cortical neurons. J. Neurochem. 58:1836–1844.

    PubMed  CAS  Google Scholar 

  • Hosokawa M., Klegeris A., Maguire J., and McGeer P. L. (2003). Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia 42:417–423.

    PubMed  Google Scholar 

  • Imai H. and Nakagawa Y. (2003). Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biol. Med. 34:145–169.

    CAS  Google Scholar 

  • Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: Reactive oxygen species-Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.

    PubMed  CAS  Google Scholar 

  • Kahlert S., Zundorf G., and Reiser G. (2005). Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J. Neurosci. Res. 79:262–271.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt B., Uherek M., Wellmann H., Volk B., and Kaltschmidt C. (1999). Inhibition of NF-κB potentiates amyloid β-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96:9409–9414.

    PubMed  CAS  Google Scholar 

  • Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.

    PubMed  CAS  Google Scholar 

  • Kim G. M., Xu J., Xu J. M., Song S. K., Yan P., Ku G., Xu X. M., and Hsu C. Y. (2001). Tumor necrosis factor receptor deletion reduces nuclear factor-kappa B activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J. Neurosci. 21:6617–6625.

    PubMed  CAS  Google Scholar 

  • Kim S. Y., Min D. S., Choi J. S., Choi Y. S., Park H. J., Sung K. W., Kim J., and Lee M. Y. (2004). Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J. Neuropathol. Exp. Neurol. 63:812–820.

    PubMed  CAS  Google Scholar 

  • Kishida K. T., Pao M., Holland S. M., and Klann E. (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J. Neurochem. 94:299–306.

    PubMed  CAS  Google Scholar 

  • Koistinaho J. and Hökfelt T. (1997). Altered gene expression in brain ischemia. NeuroReport 8:i–viii.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M., Pietri S., Culcasi M., and Bockaert J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537.

    PubMed  CAS  Google Scholar 

  • Lambeth J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181–189.

    PubMed  CAS  Google Scholar 

  • Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.

    PubMed  CAS  Google Scholar 

  • Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.

    PubMed  CAS  Google Scholar 

  • Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.

    PubMed  CAS  Google Scholar 

  • Leitinger N., Watson A. D., Faull K. F., Fogelman A. M., and Berliner J. A. (1997). Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med. Biol. 433:379–382.

    PubMed  CAS  Google Scholar 

  • Lilienbaum A. and Israel A. (2003). From calcium to NF-kappa B signaling pathways in neurons. Mol. Cell. Biol. 23:2680–2698.

    PubMed  CAS  Google Scholar 

  • Lin T. N., Wang Q., Simonyi A., Chen J. J., Cheung W. M., He Y. Y., Xu J., Sun A. Y., Hsu C. Y., and Sun G. Y. (2004). Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J. Neurochem. 90:637–645.

    PubMed  CAS  Google Scholar 

  • Lubin F. D., Johnston L. D., Sweatt J. D., and Anderson A. E. (2005). Kainate mediates nuclear factor-kappa B activation in hippocampus via phosphatidylinositol-3 kinase and extracellular signal-regulated protein kinase. Neuroscience 133:969–981.

    PubMed  CAS  Google Scholar 

  • Lukiw W. J., Cui J. G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest 115:2774–2783.

    PubMed  CAS  Google Scholar 

  • Machado F. S., Johndrow J. E., Esper L., Dias A., Bafica A., Serhan C. N., and Aliberti J. (2006). Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nature Med. 12:330–334.

    PubMed  CAS  Google Scholar 

  • Maggirwar S. B., Sarmiere P. D., Dewhurst S., and Freeman R. S. (1998). Nerve growth factor-dependent activation of NF-κB contributes to survival of sympathetic neurons. J. Neurosci. 18:10356–10365.

    PubMed  CAS  Google Scholar 

  • Manev H., Favaron M., Guidotti A., and Costa E. (1989). Delayed increase in Ca2+ influx elicited by glutamate: Role in neuronal death. Mol. Pharmacol. 36:106–112.

    PubMed  CAS  Google Scholar 

  • Manev H., Uz T., and Qu T. (1998). Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor. Neurol. Neurosci. 12:81–85.

    PubMed  CAS  Google Scholar 

  • Marchetti L., Klein M., Schlett K., Pfizenmaier K., and Eisel U. L. M. (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation-Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-κB pathway. J. Biol. Chem. 279:32869–32881.

    PubMed  CAS  Google Scholar 

  • Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.

    PubMed  Google Scholar 

  • Mazière C., Conte M. A., Degonville J., Ali D., and Maziére J. C. (1999). Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFκB. Biochem. Biophys. Res. Commun. 265:116–122.

    PubMed  Google Scholar 

  • McIntyre T. M., Zimmerman G. A., and Prescott S. M. (1999). Biologically active oxidized phospholipids. J. Biol. Chem. 274:25189–25192.

    PubMed  CAS  Google Scholar 

  • McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.

    PubMed  CAS  Google Scholar 

  • Milatovic D., Gupta R. C., and Dettbarn W. D. (2002). Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330–337.

    PubMed  CAS  Google Scholar 

  • Minami M., Kuraishi Y., and Satoh M. (1991). Effects of kainic acid on messenger RNA levels of IL-1β, IL-6, TNF-α and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176:593–598.

    PubMed  CAS  Google Scholar 

  • Minghetti L. and Levi G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54:99–125.

    PubMed  CAS  Google Scholar 

  • Minghetti L., Ajmone-Cat M. A., De Berardinis M. A., and De Simone R. (2005). Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res. Rev. 48:251–256.

    PubMed  CAS  Google Scholar 

  • Moses G. S. D., Jensen M. D., Lue L. F., Walker D. G., Sun A. Y., Simonyi A., and Sun G. Y. (2006). Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J. Neuroinflammation 3:28.

    PubMed  Google Scholar 

  • Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101:8491–8496.

    PubMed  CAS  Google Scholar 

  • Nakagawa Y. (2004). Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol. Pharm. Bull. 27:956–960.

    PubMed  CAS  Google Scholar 

  • Nicholas R. S. J., Compston A., and Brown D. R. (2001). Inhibition of tumour necrosis factor-α (TNFα)-induced NF-κB p52 converts the metabolic effects of microglial-derived TNFα on mouse cerebellar neurones to neurotoxicity. J. Neurochem. 76:1431–1438.

    PubMed  CAS  Google Scholar 

  • Nicotera P. and Leist M. (1997). Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ. 4:435–442.

    PubMed  CAS  Google Scholar 

  • Nikolova S., Lee Y. S., Lee Y. S., and Kim J. A. (2005). Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 39:1295–1304.

    PubMed  CAS  Google Scholar 

  • Noda M., Kettenmann H., and Wada K. (2006). Anti-inflammatory effects of kinins via microglia in the central nervous system. Biol. Chem. 387:167–171.

    PubMed  CAS  Google Scholar 

  • Noh K. M. and Koh J. Y. (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J. Neurosci. 20:RC111.

    PubMed  CAS  Google Scholar 

  • Norel X. and Brink C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: recent clues. Pharmacol. Ther. 103:81–94.

    PubMed  CAS  Google Scholar 

  • Ogita K. and Yoneda Y. (1994). Selective potentiation of DNA binding activities of both activator protein 1 and cyclic AMP response element binding protein through in vivo activation of N-methyl-D-aspartate receptor complex in mouse brain. J. Neurochem. 63:525–534.

    PubMed  CAS  Google Scholar 

  • Ogita K., Kubo M., Nishiyama N., Watanabe M., Nagashima R., and Yoneda Y. (2004). Enhanced binding activity of nuclear antioxidant-response element through possible formation of Nrf2/Fos-B complex after in vivo treatment with kainate in murine hippocampus. Neuropharmacology 46:580–589.

    PubMed  CAS  Google Scholar 

  • Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.

    PubMed  CAS  Google Scholar 

  • Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., He Y., Suresh S., and Patel S. C. (1997). Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., Kumar U., Switzer R. C., Sidhu A., Suresh G., Hu C. Y., and Patel S. C. (2001). Neurodegeneration in Niemann-Pick type C disease mice. Exp. Brain Res. 141:218–231.

    PubMed  CAS  Google Scholar 

  • O’Riordan K. J., Huang I. C., Pizzi M., Spano P., Boroni F., Egli R., Desai P., Fitch O., Malone L., Ahn H. J., Liou H. C., Sweatt J. D., and Levenson J. M. (2006). Regulation of nuclear factor κB in the hippocampus by group I metabotropic glutamate receptors. J. Neurosci. 26:4870–4879.

    PubMed  CAS  Google Scholar 

  • Pamplona R., Dalfó E., Ayala V., Bellmunt M. J., Prat J., Ferrer I., and Portero-Otín M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 280:21522–21530.

    PubMed  CAS  Google Scholar 

  • Paradis É., Clavel S., Julien P., Murthy M. R. V., de Bilbao F., Arsenijevic D., Giannakopoulos P., Vallet P., and Richard D. (2004). Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol. Dis. 15:312–325.

    PubMed  CAS  Google Scholar 

  • Pennypacker K. R., Thai L., Hong J. S., and McMillian M. K. (1994). Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. J. Neurosci. 14:3998–4006.

    PubMed  CAS  Google Scholar 

  • Pepicelli O., Fedele E., Berardi M., Raiteri M., Levi G., Greco A., Ajmone-Cat M. A., and Minghetti L. (2005). Cyclo-oxygenase-1 and-2 differently contribute to prostaglandin E-2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus. J. Neurochem. 93:1561–1567.

    PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Porter N. A., Caldwell S. E., and Mills K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290.

    PubMed  CAS  Google Scholar 

  • Qin L., Liu Y., Wang T., Wei S. J., Block M. L., Wilson B., Liu B., and Hong J. S. (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem. 279:1415–1421.

    PubMed  CAS  Google Scholar 

  • Ratan R. R., Murphy T. H., and Baraban J. M. (1994). Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.

    PubMed  CAS  Google Scholar 

  • Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J. P., and Welty D. F. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    PubMed  CAS  Google Scholar 

  • Rundén-Pran E., Tansø R., Haug F. M., Ottersen O. P., and Ring A. (2005). Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation. Neuroscience 136:795–810.

    PubMed  Google Scholar 

  • Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., and Ichijo H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17:2596–2606.

    PubMed  CAS  Google Scholar 

  • Salinska E., Danysz W., and Lazarewicz J. W. (2005). The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 43:322–339.

    PubMed  CAS  Google Scholar 

  • Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.

    PubMed  CAS  Google Scholar 

  • Schmidt K. N., Amstad P., Cerutti P., and Baeuerle P. A. (1995). The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chemistry & Biology 2:13–22.

    CAS  Google Scholar 

  • Serhan C. N. (2005a). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73:141–162.

    CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    CAS  Google Scholar 

  • Serhan C. N. and Savill J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunol. 6:1191–1197.

    CAS  Google Scholar 

  • Shi H. L., Liu S. M., Miyake M., and Liu K. J. (2006). Ebselen induced C6 glioma cell death in oxygen and glucose deprivation. Chem. Res. Toxicol. 19:655–660.

    PubMed  CAS  Google Scholar 

  • Siesjö B. K. (1990). Calcium in the brain under physiological and pathological conditions. Eur. Neurol. 30:3–9.

    PubMed  Google Scholar 

  • Strijbos P. J. and Rothwell N. J. (1995). Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J. Neurosci. 15:3468–3474.

    PubMed  CAS  Google Scholar 

  • Sullivan P. G., Bruce-Keller A. J., Rabchevsky A. G., Christakos S., Clair D. K., Mattson M. P., and Scheff S. W. (1999). Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J. Neurosci. 19:6248–6256.

    PubMed  CAS  Google Scholar 

  • Sun D., Newman T. A., Perry V. H., and Weller R. O. (2004). Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol. Appl. Neurobiol. 30:374–384.

    PubMed  CAS  Google Scholar 

  • Szekely A. M., Barbaccia M. L., Alho H., and Costa E. (1989). In primary cultures of cerebellar granule cells the activation of N-methyl-D-aspartate-sensitive glutamate receptors induces c- fos mRNA expression. Molec. Pharmacol. 35:401–408.

    CAS  Google Scholar 

  • Vaccarino F., Guidotti A., and Costa E. (1987). Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc. Natl. Acad. Sci. USA 84:8707–8711.

    PubMed  CAS  Google Scholar 

  • van Kuijk F. J. G. M., Sevanian A., Handelman G. J., and Dratz E. A. (1987). A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.

    Google Scholar 

  • Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.

    PubMed  CAS  Google Scholar 

  • Wang J. Y., Wen L. L., Huang Y. N., Chen Y. T., and Ku M. C. (2006). Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.

    CAS  Google Scholar 

  • Williams C. H., Jr., Arscott L. D., Müller S., Lennon B. W., Ludwig M. L., Wang P. F., Veine D. M., Becker K., and Schirmer R. H. (2000). Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem. 267:6110–6117.

    PubMed  CAS  Google Scholar 

  • Williamson P. and Schlegel R. A. (2002). Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585:53–63.

    CAS  Google Scholar 

  • Wilms H., Rosenstiel P., Sievers J., Deuschl G., Zecca L., and Lucius R. (2003). Activation of microglia by human neuromelanin is NF-κB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17:500–502.

    PubMed  CAS  Google Scholar 

  • Witowski J., Ksiazek K., and Jorres A. (2004). Interleukin-17: a mediator of inflammatory responses. Cell Mol. Life Sci. 61:567–579.

    PubMed  CAS  Google Scholar 

  • Wolf C. M. and Eastman A. (1999). The temporal relationship between protein phosphatase, mitochondrial cytochrome c release, and caspase activation in apoptosis. Exp. Cell Res. 247:505–513.

    PubMed  CAS  Google Scholar 

  • Wu S. M., Patel D. D., and Pizzo S. V. (1998). Oxidized α2-macroglobulin (α2M) differentially regulates receptor binding by cytokines/growth factors: implications for tissue injury and repair mechanisms in inflammation. J. Immunol. 161:4356–4365.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y. and Gaynor R. B. (2004). IκB kinases: key regulators of the NF-κB pathway. Trends Biochem. Sci. 29:72–79.

    PubMed  Google Scholar 

  • Yedgar S., Cohen Y., and Shoseyov D. (2006). Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim. Biophys. Acta 1761:1373–1382.

    PubMed  CAS  Google Scholar 

  • Yin H. Y., Morrow J. D., and Porter N. A. (2004). Identification of a novel class of endoperoxides from arachidonate autoxidation. J. Biol. Chem. 279:3766–3776.

    PubMed  CAS  Google Scholar 

  • Yoneda Y., Ogita K., Azuma Y., Kuramoto N., Manabe T., and Kitayama T. (1999). Predominant expression of nuclear activator protein-1 complex with DNA binding activity following systemic administration of N-methyl-D-aspartate in dentate granule cells of murine hippocampus. Neuroscience 93:19–31.

    PubMed  CAS  Google Scholar 

  • Yu Z., Zhou D., Bruce-Keller A. J., Kindy M. S., and Mattson M. P. (1999). Lack of the p50 subunit of nuclear factor-κB increases the vulnerability of hippocampal neurons to excitotoxic injury. J. Neurosci. 19:8856–8865.

    PubMed  CAS  Google Scholar 

  • Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.

    PubMed  CAS  Google Scholar 

  • Zecca L., Zucca F. A., Wilms H., and Sulzer D. (2003). Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26:578–580.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A., Ong, WY., Horrocks, L.A. (2008). Possible Mechanisms of Neural Injury Caused by Glutamate and Its Receptors. In: Neurochemical Aspects of Excitotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73023-3_7

Download citation

Publish with us

Policies and ethics