Excitatory Amino Acid Receptors and Their Association with Neural Membrane Glycerophospholipid Metabolism

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


NMDA Receptor AMPA Receptor Cerebellar Granule Cell Arachidonic Acid Release Excitatory Amino Acid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod J. (1990). Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem. Soc. Trans. 18:503–507.PubMedGoogle Scholar
  2. Axelrod J., Burch R. M., and Jelsema C. L. (1988). Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 11:117–123.PubMedGoogle Scholar
  3. Balazs R. (2006). Trophic effect of glutamate. Curr. Top. Medicinal Chem. 6:961–968.Google Scholar
  4. Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.PubMedGoogle Scholar
  5. Bertolino M., Baraldi M., Parenti C., Braghiroli D., DiBella M., Vicini S., and Costa E. (1993). Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus. Receptors & Channels 1:267–278.Google Scholar
  6. Birgbauer E., Rao T. S., and Webb M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J. Neurosci. Res. 78:157–166.PubMedGoogle Scholar
  7. Boggs K. P., Rock C. O., and Jackowski S. (1995). Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J. Biol. Chem. 270:7757–7764.PubMedGoogle Scholar
  8. Buratta S., Mambrini R., Miniaci M. C., Tempia F., and Mozzi R. (2004). Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J. Neurochem. 89:730–738.PubMedGoogle Scholar
  9. Cazevieille C., Muller A., Meynier F., Dutrait N., and Bonne C. (1994). Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int. 24:395–398.PubMedGoogle Scholar
  10. Chabot C., Gagné J., Giguère C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309.PubMedGoogle Scholar
  11. Chin J. H., Buckholz T. M., and DeLorenzo R. J. (1985). Calmodulin and protein phosphorylation: implications in brain ischemia. Prog. Brain Res. 63:169–184.PubMedGoogle Scholar
  12. Coleman R. A., Smith W. L., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.PubMedGoogle Scholar
  13. Danbolt N. C. (1994). The high affinity uptake system for excitatory amino acid in brain. Prog. Neurobiol. 44:377–396.PubMedGoogle Scholar
  14. Davis J. B. and Maher P. (1994). Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652:169–173.PubMedGoogle Scholar
  15. de Bernardo S., Canals S., Casarejos M. J., Solano R. M., Menendez J., and Mena M. A. (2004). Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J. Neurochem. 91:667–682.PubMedGoogle Scholar
  16. DeCoster M. A., Mukherjee P. K., Davis R. J., and Bazan N. G. (1998). Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J. Neurosci. Res. 53:297–303.PubMedGoogle Scholar
  17. del Cerro S., Arai A., and Lynch G. (1990). Inhibition of long-term potentiation by an antagonist of platelet-activating factor receptors. Behav. Neural Biol. 54:213–217.PubMedGoogle Scholar
  18. Dumuis A., Sebben M., Haynes L., Pin J.-P., and Bockaert J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70.PubMedGoogle Scholar
  19. Facchinetti F., Hack N. J., and Balazs R. (1998). Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis. Neurochem. Int. 33:263–270.PubMedGoogle Scholar
  20. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  21. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  22. Farooqui A. A. and Horrocks L. A. (1997). Nitric oxide synthase inhibitors do not attenuate diacylglycerol or monoacylglycerol lipase activities in synaptoneurosomes. Neurochem. Res. 22:1265–1269.PubMedGoogle Scholar
  23. Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.Google Scholar
  24. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedGoogle Scholar
  25. Farooqui A. A., Rammohan K. W., and Horrocks L. A. (1989). Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. N. Y. Acad. Sci. 559:25–36.PubMedGoogle Scholar
  26. Farooqui A. A., Wallace L. J., and Horrocks L. A. (1991). Stimulation of mono- and diacylglycerol lipase activities in ibotenate-induced lesions of nucleus basalis magnocellularis. Neurosci. Lett. 131:97–99.PubMedGoogle Scholar
  27. Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.PubMedGoogle Scholar
  28. Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997a). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp. 277–295.Google Scholar
  29. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997b). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.Google Scholar
  30. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997c). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.Google Scholar
  31. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  32. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  33. Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. - Anti-Inflammatory & Anti-Allergy Agents 1:193–204.Google Scholar
  34. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.Google Scholar
  35. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp. 14–29.Google Scholar
  36. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedGoogle Scholar
  37. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedGoogle Scholar
  38. Fiebich B. L., Hüll M., Lieb K., Gyufko K., Berger M., and Bauer J. (1997). Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J. Neurochem. 68:704–709.PubMedGoogle Scholar
  39. Friguet B., Stadtman E. R., and Szweda L. I. (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J. Biol. Chem. 269:21639–21643.PubMedGoogle Scholar
  40. Gally J. A., Montague P. R., Reeke G. N., Jr., and Edelman G. M. (1990). The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. USA 87:3547–3551.PubMedGoogle Scholar
  41. Gasull T., DeGregorio-Rocasolano N., Zapata A., and Trullas R. (2000). Choline release and inhibition of phosphatidylcholine synthesis precede excitotoxic neuronal death but not neurotoxicity induced by serum deprivation. J. Biol. Chem. 275:18350–18357.PubMedGoogle Scholar
  42. Gasull T., DeGregorio-Rocasolano N., and Trullas R. (2001). Overactivation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death. J. Neurochem. 77:13–22.PubMedGoogle Scholar
  43. Gasull T., DeGregorio-Rocasolano N., Enguita M., Hurtan J. M., and Trullas R. (2002). Inhibition of phosphatidylcholine synthesis is associated with excitotoxic cell death in cerebellar granule cell cultures. Amino Acids 23:19–25.PubMedGoogle Scholar
  44. Gasull T., Sarri E., DeGregorio-Rocasolano N., and Trullas R. (2003). NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity. J. Neurosci. 23:4100–4107.PubMedGoogle Scholar
  45. Gensert J. M. and Ratan R. R. (2006). The metabolic coupling of arginine metabolism to nitric oxide generation by astrocytes. Antioxidants & Redox Signaling 8:919–928.Google Scholar
  46. Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J. D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.PubMedGoogle Scholar
  47. Gòmez-Muñoz A., O’Brien L., Hundal R., and Steinbrecher U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J. Lipid Res. 40:988–993.PubMedGoogle Scholar
  48. Halpain S., Girault J.-A., and Greengard P. (1990). Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369–372.PubMedGoogle Scholar
  49. Hannan A. J., Blakemore C., Katsnelson A., Vitalis T., Huber K. M., Bear M., Roder J., Kim D., Shin H. S., and Kind P. C. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4:282–288.PubMedGoogle Scholar
  50. Hetman M. and Kharebava G. (2006). Survival signaling pathways activated by NMDA receptors. Curr. Top. Medicinal Chem. 6:787–799.Google Scholar
  51. Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.PubMedGoogle Scholar
  52. Ikeda M. (1993). Reduction of phosphoinositide hydrolysis by L-amino-3-phosphonopropionate may be caused by the inhibition of synthesis of phosphatidylinositols. Neurosci. Lett. 157:87–90.PubMedGoogle Scholar
  53. Ishii S., Nagase T., and Shimizu T. (2002). Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat. 68-69:599–609.PubMedGoogle Scholar
  54. Jamme I., Petit E., Divoux D., Gerbi A., Maxient J. M., and Nouvelot A. (1995). Modulation of mouse cerebral Na+,K+-ATPase activity by oxygen free radicals. NeuroReport 7:333–337.PubMedGoogle Scholar
  55. Kato K. and Zorumski C. F. (1996). Platelet-activating factor as a potential retrograde messenger. J. Lipid Mediat. Cell Signal. 14:341–348.PubMedGoogle Scholar
  56. Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.PubMedGoogle Scholar
  57. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedGoogle Scholar
  58. Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.PubMedGoogle Scholar
  59. Kooy N., Royall J., Ischoropoulos H., and Beckman J. (1994). Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16:149–156.PubMedGoogle Scholar
  60. Kornecki E., Wieraszko A., Chan J. C., and Ehrlich Y. H. (1996). Platelet activating factor (PAF) in memory formation: Role as a retrograde messenger in long-term potentiation. J. Lipid Mediat. Cell Signal. 14:115–126.PubMedGoogle Scholar
  61. Kwon K. J., Jung Y. S., Lee S. H., Moon C. H., and Baik E. J. (2005). Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res. 81:73–84.PubMedGoogle Scholar
  62. Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55:1875–1881.PubMedGoogle Scholar
  63. Lee E. S. Y., Chen H. T., Shepherd K. R., Lamango N. S., Soliman K. F. A., and Charlton C. G. (2004). Inhibitory effects of lysophosphatidylcholine on the dopaminergic system. Neurochem. Res. 29:1333–1342.PubMedGoogle Scholar
  64. Lee B., Butcher G. Q., Hoyt K. R., Impey S., and Obrietan K. (2005a). Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J. Neurosci. 25:1137–1148.Google Scholar
  65. Lee E. S. Y., Chen H., Charlton C. G., and Soliman K. F. A. (2005b). The role of phospholipid methylation in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced neurotoxicity in PC12 cells. NeuroToxicology 26:945–957.Google Scholar
  66. Lee E. S. Y., Soliman K. F. A., and Charlton C. G. (2005c). Lysophosphatidylcholine decreases locomotor activities and dopamine turnover rate in rats. NeuroToxicology 26:27–38.Google Scholar
  67. Li Y., Maher P., and Schubert D. (1997a). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463.Google Scholar
  68. Li Y., Maher P., and Schubert D. (1997b). Requirement for cGMP in nerve cell death caused by glutathione depletion. J. Cell Biol. 139:1317–1324.Google Scholar
  69. Li Y., Maher P., and Schubert D. (1998). Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc. Natl. Acad. Sci. USA 95:7748–7753.PubMedGoogle Scholar
  70. Lipton S. A. and Rosenberg P. A. (1994). Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613–622.PubMedGoogle Scholar
  71. Llansola M., Monfort P., and Felipo V. (2000). Inhibitors of phospholipase C prevent glutamate neurotoxicity in primary cultures of cerebellar neurons. J. Pharmacol. Exp. Ther. 292: 870–876.PubMedGoogle Scholar
  72. Lu C., Chan S. L., Haughey N., Lee W. T., and Mattson M. P. (2001). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J. Neurochem. 78:577–589.PubMedGoogle Scholar
  73. Lynch M. A. and Voss K. L. (1990). Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55:215–221.PubMedGoogle Scholar
  74. Maccarrone M., Melino G., and Finazzi-Agro A. (2001). Lipoxygenases and their involvement in programmed cell death. Cell Death. Differ. 8:776–784.PubMedGoogle Scholar
  75. Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.PubMedGoogle Scholar
  76. Maingret F., Patel A. J., Lesage F., Lazdunski M., and Honoré E. (2000). Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275:10128–10133.PubMedGoogle Scholar
  77. Manev H., Uz T., Sugaya K., and Qu T. Y. (2000). Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J. 14:1464–1469.PubMedGoogle Scholar
  78. Martínez-Cayuela M. (1995). Oxygen free radicals and human disease. Biochimie 77:147–161.PubMedGoogle Scholar
  79. Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.PubMedGoogle Scholar
  80. McGahon B., Clements M. P., and Lynch M. A. (1997). The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience 81:9–16.PubMedGoogle Scholar
  81. Milatovic D., Gupta R. C., and Dettbarn W. D. (2002). Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330–337.PubMedGoogle Scholar
  82. Millanvoye-Van Brussel E., Topal G., Brunet A., Do Phaw T., Deckert V., Rendu F., and David-Dufilho M. (2004). Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem. J. 380:533–539.PubMedGoogle Scholar
  83. Miyata M., Kashiwadani H., Fukaya M., Hayashi T., Wu D. Q., Suzuki T., Watanabe M., and Kawakami Y. (2003). Role of thalamic phospholipase Cβ4 mediated by metabotropic glutamate receptor type 1 in inflammatory pain. J. Neurosci. 23:8098–8108.PubMedGoogle Scholar
  84. Mukherjee P. K., DeCoster M. A., Campbell F. Z., Davis R. J., and Bazan N. G. (1999). Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274:6493–6498.PubMedGoogle Scholar
  85. Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 77–92.Google Scholar
  86. Nakamura M., Sato K., Fukaya M., Araishi K., Aiba A., Kano M., and Watanabe M. (2004). Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20:2929–2944.PubMedGoogle Scholar
  87. Nicholls D. G. (2004). Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med. 4:149–177.PubMedGoogle Scholar
  88. Nicolle M. M., Colombo P. J., Gallagher M., and McKinney M. (1999). Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J. Neurosci. 19:9604–9610.PubMedGoogle Scholar
  89. Nishizuka Y. (1986). Studies and perspectives of protein kinase C. Science 233:305–312.PubMedGoogle Scholar
  90. Novelli A., Nicoletti F., Wroblewski J. T., Alho H., Costa A. E., and Guidotti A. (1987). Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells. J. Neurosci. 7:40–47.PubMedGoogle Scholar
  91. Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.PubMedGoogle Scholar
  92. Okabe S., Vicario-Abejón C., Segal M., and McKay R. D. (1998). Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur. J. Neurosci. 10:2192–2198.PubMedGoogle Scholar
  93. Okubo Y., Kakizawa S., Hirose K., and Iino M. (2004). Cross talk between metabotropic and ionotropic glutamate receptor- mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J. Neurosci. 24:9513–9520.PubMedGoogle Scholar
  94. Ong W. Y., He Y., Suresh S., and Patel S. C. (1997). Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367.PubMedGoogle Scholar
  95. Ong W. Y., Lu X. R., Ong B. K. C., Horrocks L. A., Farooqui A. A., and Lim S. K. (2003). Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp. Brain Res. 148:521–524.PubMedGoogle Scholar
  96. Packard M. G., Teather L. A., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66:176–182.PubMedGoogle Scholar
  97. Papadia S., Stevenson P., Hardingham N. R., Bading H., and Hardingham G. E. (2005). Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25:4279–4287.PubMedGoogle Scholar
  98. Parker M. A., Bazan H. E. P., Marcheselli V., Rodriguez de Turco E. B., and Bazan N. G. (2002). Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria. J. Neurosci. Res. 69:39–50.PubMedGoogle Scholar
  99. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  100. Prasad K. N., La Rosa F. G., and Prasad J. E. (1998). Prostaglandins act as neurotoxin for differentiated neuroblastoma cells in culture and increase levels of ubiquitin and beta-amyloid. In Vitro Cell Dev. Biol. Anim 34:265–274.PubMedGoogle Scholar
  101. Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.PubMedGoogle Scholar
  102. Sanfeliu C., Hunt A., and Patel A. J. (1990). Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526:241–248.PubMedGoogle Scholar
  103. Schapira A. H. (1996). Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 9:260–264.PubMedGoogle Scholar
  104. Schilling T., Lehmann F., Ruckert B., and Eder C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J. Physiol. (London) 557:105–120.Google Scholar
  105. Siesjö B. K. (1990). Calcium in the brain under physiological and pathological conditions. Eur. Neurol. 30:3–9.PubMedGoogle Scholar
  106. Siman R. and Noszek J. C. (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287.PubMedGoogle Scholar
  107. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.PubMedGoogle Scholar
  108. Stella N., Pellerin L., and Magistretti P. J. (1995). Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: Involvement of a pH-sensitive membrane phospholipase A2. J. Neurosci. 15:3307–3317.PubMedGoogle Scholar
  109. Sun G. Y. and Foudin L. L. (1984). On the status of lysolecithin in rat cerebral cortex during ischemia. J. Neurochem. 43:1081–1086.PubMedGoogle Scholar
  110. Suzuki Y. J., Forman H. J., and Sevanian A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology & Medicine 22:269–285.Google Scholar
  111. Svensson C. I., Hua X. Y., Protter A. A., Powell H. C., and Yaksh T. L. (2003a). Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. NeuroReport 14:1153–1157.Google Scholar
  112. Svensson C. I., Marsala M., Westerlund A., Calcutt N. A., Campana W. M., Freshwater J. D., Catalano R., Feng Y., Protter A. A., Scott B., and Yaksh T. L. (2003b). Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J. Neurochem. 86:1534–1544.Google Scholar
  113. Thwin M. M., Ong W. Y., Fong C. W., Sato K., Kodama K., Farooqui A. A., and Gopalakrishnakone P. (2003). Secretory phospholipase A2 activity in the normal and kainate injected rat brain, and inhibition by a peptide derived from python serum. Exp. Brain Res. 150:427–433.PubMedGoogle Scholar
  114. Toborek M., Malecki A., Garrido R., Mattson M. P., Hennig B., and Young B. (1999). Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J. Neurochem. 73:684–692.PubMedGoogle Scholar
  115. Uz T., Pesold C., Longone P., and Manev H. (1998). Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. FASEB J. 12:439–449.PubMedGoogle Scholar
  116. Vahidy W. H., Ong W. Y., Farooqui A. A., and Yeo J. F. (2006). Effects of intracerebroventricular injections of free fatty acids, lysophospholipids, or platelet activating factor in a mouse model of orofacial pain. Exp. Brain Res. 174:781–785.PubMedGoogle Scholar
  117. Wang J. Q., Tang Q. S., Parelkar N. K., Liu Z. G., Samdani S., Choe E. S., Yang L., and Mao L. M. (2004). Glutamate signaling to Ras-MAPK in striatal neurons - Mechanisms for inducible gene expression and plasticity. Mol. Neurobiol. 29:1–14.PubMedGoogle Scholar
  118. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedGoogle Scholar
  119. Webber K. O. and Hajra A. K. (1993). Purification of dihydroxyacetone phosphate acyltransferase from guinea pig liver peroxisomes. Arch. Biochem. Biophys. 300:88–97.PubMedGoogle Scholar
  120. Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742.PubMedGoogle Scholar
  121. Wolfe L. S. and Horrocks L. A. (1994). Eicosanoids. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp. 475–490.Google Scholar
  122. Woodruff R. H. and Franklin R. J. M. (1999). The expression of myelin protein mRNAs during remyelination of lysolecithin-induced demyelination. Neuropathol. Appl. Neurobiol. 25:226–235.PubMedGoogle Scholar
  123. Xu Y. and Tao Y. X. (2004). Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity. NeuroReport 15:263–266.PubMedGoogle Scholar
  124. Xu Y., Zhang B. S., Hua Z. C., Johns R. A., Bredt D. S., and Tao Y. X. (2004). Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp. Neurol. 189:16–24.PubMedGoogle Scholar
  125. Yegin A., Akbas S. H., Ozben T., and Korgun D. K. (2002). Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol. Scand. 106:258–262.PubMedGoogle Scholar
  126. Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.PubMedGoogle Scholar
  127. Zapata A., Capdevila J. L., and Trullas R. (1998). Region-specific and calcium-dependent increase in dialysate choline levels by NMDA. J. Neurosci. 18:3597–3605.PubMedGoogle Scholar
  128. Zhang J. P. and Sun G. Y. (1995). Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64:1688–1695.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations