Skip to main content

Excitatory Amino Acid Receptors and Their Association with Neural Membrane Glycerophospholipid Metabolism

  • Chapter
Neurochemical Aspects of Excitotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod J. (1990). Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction. Biochem. Soc. Trans. 18:503–507.

    PubMed  CAS  Google Scholar 

  • Axelrod J., Burch R. M., and Jelsema C. L. (1988). Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 11:117–123.

    PubMed  CAS  Google Scholar 

  • Balazs R. (2006). Trophic effect of glutamate. Curr. Top. Medicinal Chem. 6:961–968.

    CAS  Google Scholar 

  • Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.

    PubMed  CAS  Google Scholar 

  • Bertolino M., Baraldi M., Parenti C., Braghiroli D., DiBella M., Vicini S., and Costa E. (1993). Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus. Receptors & Channels 1:267–278.

    CAS  Google Scholar 

  • Birgbauer E., Rao T. S., and Webb M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. J. Neurosci. Res. 78:157–166.

    PubMed  CAS  Google Scholar 

  • Boggs K. P., Rock C. O., and Jackowski S. (1995). Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J. Biol. Chem. 270:7757–7764.

    PubMed  CAS  Google Scholar 

  • Buratta S., Mambrini R., Miniaci M. C., Tempia F., and Mozzi R. (2004). Group I metabotropic glutamate receptors mediate the inhibition of phosphatidylserine synthesis in rat cerebellar slices: a possible role in physiology and pathology. J. Neurochem. 89:730–738.

    PubMed  CAS  Google Scholar 

  • Cazevieille C., Muller A., Meynier F., Dutrait N., and Bonne C. (1994). Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int. 24:395–398.

    PubMed  CAS  Google Scholar 

  • Chabot C., Gagné J., Giguère C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309.

    PubMed  CAS  Google Scholar 

  • Chin J. H., Buckholz T. M., and DeLorenzo R. J. (1985). Calmodulin and protein phosphorylation: implications in brain ischemia. Prog. Brain Res. 63:169–184.

    PubMed  CAS  Google Scholar 

  • Coleman R. A., Smith W. L., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.

    PubMed  CAS  Google Scholar 

  • Danbolt N. C. (1994). The high affinity uptake system for excitatory amino acid in brain. Prog. Neurobiol. 44:377–396.

    PubMed  CAS  Google Scholar 

  • Davis J. B. and Maher P. (1994). Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652:169–173.

    PubMed  CAS  Google Scholar 

  • de Bernardo S., Canals S., Casarejos M. J., Solano R. M., Menendez J., and Mena M. A. (2004). Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J. Neurochem. 91:667–682.

    PubMed  Google Scholar 

  • DeCoster M. A., Mukherjee P. K., Davis R. J., and Bazan N. G. (1998). Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J. Neurosci. Res. 53:297–303.

    PubMed  CAS  Google Scholar 

  • del Cerro S., Arai A., and Lynch G. (1990). Inhibition of long-term potentiation by an antagonist of platelet-activating factor receptors. Behav. Neural Biol. 54:213–217.

    PubMed  CAS  Google Scholar 

  • Dumuis A., Sebben M., Haynes L., Pin J.-P., and Bockaert J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70.

    PubMed  CAS  Google Scholar 

  • Facchinetti F., Hack N. J., and Balazs R. (1998). Calcium influx via ionotropic glutamate receptors causes long lasting inhibition of metabotropic glutamate receptor-coupled phosphoinositide hydrolysis. Neurochem. Int. 33:263–270.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1997). Nitric oxide synthase inhibitors do not attenuate diacylglycerol or monoacylglycerol lipase activities in synaptoneurosomes. Neurochem. Res. 22:1265–1269.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rammohan K. W., and Horrocks L. A. (1989). Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. N. Y. Acad. Sci. 559:25–36.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Wallace L. J., and Horrocks L. A. (1991). Stimulation of mono- and diacylglycerol lipase activities in ibotenate-induced lesions of nucleus basalis magnocellularis. Neurosci. Lett. 131:97–99.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997a). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp. 277–295.

    Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997b). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.

    CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997c). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.

    CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. - Anti-Inflammatory & Anti-Allergy Agents 1:193–204.

    CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp. 14–29.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Fiebich B. L., Hüll M., Lieb K., Gyufko K., Berger M., and Bauer J. (1997). Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J. Neurochem. 68:704–709.

    PubMed  CAS  Google Scholar 

  • Friguet B., Stadtman E. R., and Szweda L. I. (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J. Biol. Chem. 269:21639–21643.

    PubMed  CAS  Google Scholar 

  • Gally J. A., Montague P. R., Reeke G. N., Jr., and Edelman G. M. (1990). The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. USA 87:3547–3551.

    PubMed  CAS  Google Scholar 

  • Gasull T., DeGregorio-Rocasolano N., Zapata A., and Trullas R. (2000). Choline release and inhibition of phosphatidylcholine synthesis precede excitotoxic neuronal death but not neurotoxicity induced by serum deprivation. J. Biol. Chem. 275:18350–18357.

    PubMed  CAS  Google Scholar 

  • Gasull T., DeGregorio-Rocasolano N., and Trullas R. (2001). Overactivation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death. J. Neurochem. 77:13–22.

    PubMed  CAS  Google Scholar 

  • Gasull T., DeGregorio-Rocasolano N., Enguita M., Hurtan J. M., and Trullas R. (2002). Inhibition of phosphatidylcholine synthesis is associated with excitotoxic cell death in cerebellar granule cell cultures. Amino Acids 23:19–25.

    PubMed  CAS  Google Scholar 

  • Gasull T., Sarri E., DeGregorio-Rocasolano N., and Trullas R. (2003). NMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity. J. Neurosci. 23:4100–4107.

    PubMed  CAS  Google Scholar 

  • Gensert J. M. and Ratan R. R. (2006). The metabolic coupling of arginine metabolism to nitric oxide generation by astrocytes. Antioxidants & Redox Signaling 8:919–928.

    CAS  Google Scholar 

  • Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J. D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.

    PubMed  CAS  Google Scholar 

  • Gòmez-Muñoz A., O’Brien L., Hundal R., and Steinbrecher U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J. Lipid Res. 40:988–993.

    PubMed  Google Scholar 

  • Halpain S., Girault J.-A., and Greengard P. (1990). Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369–372.

    PubMed  CAS  Google Scholar 

  • Hannan A. J., Blakemore C., Katsnelson A., Vitalis T., Huber K. M., Bear M., Roder J., Kim D., Shin H. S., and Kind P. C. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat. Neurosci. 4:282–288.

    PubMed  CAS  Google Scholar 

  • Hetman M. and Kharebava G. (2006). Survival signaling pathways activated by NMDA receptors. Curr. Top. Medicinal Chem. 6:787–799.

    CAS  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Ikeda M. (1993). Reduction of phosphoinositide hydrolysis by L-amino-3-phosphonopropionate may be caused by the inhibition of synthesis of phosphatidylinositols. Neurosci. Lett. 157:87–90.

    PubMed  CAS  Google Scholar 

  • Ishii S., Nagase T., and Shimizu T. (2002). Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat. 68-69:599–609.

    PubMed  CAS  Google Scholar 

  • Jamme I., Petit E., Divoux D., Gerbi A., Maxient J. M., and Nouvelot A. (1995). Modulation of mouse cerebral Na+,K+-ATPase activity by oxygen free radicals. NeuroReport 7:333–337.

    PubMed  CAS  Google Scholar 

  • Kato K. and Zorumski C. F. (1996). Platelet-activating factor as a potential retrograde messenger. J. Lipid Mediat. Cell Signal. 14:341–348.

    PubMed  CAS  Google Scholar 

  • Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.

    PubMed  CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    PubMed  CAS  Google Scholar 

  • Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.

    PubMed  CAS  Google Scholar 

  • Kooy N., Royall J., Ischoropoulos H., and Beckman J. (1994). Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16:149–156.

    PubMed  CAS  Google Scholar 

  • Kornecki E., Wieraszko A., Chan J. C., and Ehrlich Y. H. (1996). Platelet activating factor (PAF) in memory formation: Role as a retrograde messenger in long-term potentiation. J. Lipid Mediat. Cell Signal. 14:115–126.

    PubMed  CAS  Google Scholar 

  • Kwon K. J., Jung Y. S., Lee S. H., Moon C. H., and Baik E. J. (2005). Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res. 81:73–84.

    PubMed  CAS  Google Scholar 

  • Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55:1875–1881.

    PubMed  CAS  Google Scholar 

  • Lee E. S. Y., Chen H. T., Shepherd K. R., Lamango N. S., Soliman K. F. A., and Charlton C. G. (2004). Inhibitory effects of lysophosphatidylcholine on the dopaminergic system. Neurochem. Res. 29:1333–1342.

    PubMed  CAS  Google Scholar 

  • Lee B., Butcher G. Q., Hoyt K. R., Impey S., and Obrietan K. (2005a). Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J. Neurosci. 25:1137–1148.

    CAS  Google Scholar 

  • Lee E. S. Y., Chen H., Charlton C. G., and Soliman K. F. A. (2005b). The role of phospholipid methylation in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced neurotoxicity in PC12 cells. NeuroToxicology 26:945–957.

    CAS  Google Scholar 

  • Lee E. S. Y., Soliman K. F. A., and Charlton C. G. (2005c). Lysophosphatidylcholine decreases locomotor activities and dopamine turnover rate in rats. NeuroToxicology 26:27–38.

    CAS  Google Scholar 

  • Li Y., Maher P., and Schubert D. (1997a). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463.

    CAS  Google Scholar 

  • Li Y., Maher P., and Schubert D. (1997b). Requirement for cGMP in nerve cell death caused by glutathione depletion. J. Cell Biol. 139:1317–1324.

    CAS  Google Scholar 

  • Li Y., Maher P., and Schubert D. (1998). Phosphatidylcholine-specific phospholipase C regulates glutamate-induced nerve cell death. Proc. Natl. Acad. Sci. USA 95:7748–7753.

    PubMed  CAS  Google Scholar 

  • Lipton S. A. and Rosenberg P. A. (1994). Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613–622.

    PubMed  Google Scholar 

  • Llansola M., Monfort P., and Felipo V. (2000). Inhibitors of phospholipase C prevent glutamate neurotoxicity in primary cultures of cerebellar neurons. J. Pharmacol. Exp. Ther. 292: 870–876.

    PubMed  CAS  Google Scholar 

  • Lu C., Chan S. L., Haughey N., Lee W. T., and Mattson M. P. (2001). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J. Neurochem. 78:577–589.

    PubMed  CAS  Google Scholar 

  • Lynch M. A. and Voss K. L. (1990). Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55:215–221.

    PubMed  CAS  Google Scholar 

  • Maccarrone M., Melino G., and Finazzi-Agro A. (2001). Lipoxygenases and their involvement in programmed cell death. Cell Death. Differ. 8:776–784.

    PubMed  CAS  Google Scholar 

  • Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.

    PubMed  CAS  Google Scholar 

  • Maingret F., Patel A. J., Lesage F., Lazdunski M., and Honoré E. (2000). Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275:10128–10133.

    PubMed  CAS  Google Scholar 

  • Manev H., Uz T., Sugaya K., and Qu T. Y. (2000). Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J. 14:1464–1469.

    PubMed  CAS  Google Scholar 

  • Martínez-Cayuela M. (1995). Oxygen free radicals and human disease. Biochimie 77:147–161.

    PubMed  Google Scholar 

  • Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.

    PubMed  Google Scholar 

  • McGahon B., Clements M. P., and Lynch M. A. (1997). The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience 81:9–16.

    PubMed  CAS  Google Scholar 

  • Milatovic D., Gupta R. C., and Dettbarn W. D. (2002). Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330–337.

    PubMed  CAS  Google Scholar 

  • Millanvoye-Van Brussel E., Topal G., Brunet A., Do Phaw T., Deckert V., Rendu F., and David-Dufilho M. (2004). Lysophosphatidylcholine and 7-oxocholesterol modulate Ca2+ signals and inhibit the phosphorylation of endothelial NO synthase and cytosolic phospholipase A2. Biochem. J. 380:533–539.

    PubMed  CAS  Google Scholar 

  • Miyata M., Kashiwadani H., Fukaya M., Hayashi T., Wu D. Q., Suzuki T., Watanabe M., and Kawakami Y. (2003). Role of thalamic phospholipase Cβ4 mediated by metabotropic glutamate receptor type 1 in inflammatory pain. J. Neurosci. 23:8098–8108.

    PubMed  CAS  Google Scholar 

  • Mukherjee P. K., DeCoster M. A., Campbell F. Z., Davis R. J., and Bazan N. G. (1999). Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274:6493–6498.

    PubMed  CAS  Google Scholar 

  • Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 77–92.

    Google Scholar 

  • Nakamura M., Sato K., Fukaya M., Araishi K., Aiba A., Kano M., and Watanabe M. (2004). Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20:2929–2944.

    PubMed  Google Scholar 

  • Nicholls D. G. (2004). Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med. 4:149–177.

    PubMed  CAS  Google Scholar 

  • Nicolle M. M., Colombo P. J., Gallagher M., and McKinney M. (1999). Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J. Neurosci. 19:9604–9610.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1986). Studies and perspectives of protein kinase C. Science 233:305–312.

    PubMed  CAS  Google Scholar 

  • Novelli A., Nicoletti F., Wroblewski J. T., Alho H., Costa A. E., and Guidotti A. (1987). Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells. J. Neurosci. 7:40–47.

    PubMed  CAS  Google Scholar 

  • Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.

    PubMed  CAS  Google Scholar 

  • Okabe S., Vicario-Abejón C., Segal M., and McKay R. D. (1998). Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur. J. Neurosci. 10:2192–2198.

    PubMed  CAS  Google Scholar 

  • Okubo Y., Kakizawa S., Hirose K., and Iino M. (2004). Cross talk between metabotropic and ionotropic glutamate receptor- mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J. Neurosci. 24:9513–9520.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., He Y., Suresh S., and Patel S. C. (1997). Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., Lu X. R., Ong B. K. C., Horrocks L. A., Farooqui A. A., and Lim S. K. (2003). Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp. Brain Res. 148:521–524.

    PubMed  CAS  Google Scholar 

  • Packard M. G., Teather L. A., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66:176–182.

    PubMed  CAS  Google Scholar 

  • Papadia S., Stevenson P., Hardingham N. R., Bading H., and Hardingham G. E. (2005). Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25:4279–4287.

    PubMed  CAS  Google Scholar 

  • Parker M. A., Bazan H. E. P., Marcheselli V., Rodriguez de Turco E. B., and Bazan N. G. (2002). Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria. J. Neurosci. Res. 69:39–50.

    PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Prasad K. N., La Rosa F. G., and Prasad J. E. (1998). Prostaglandins act as neurotoxin for differentiated neuroblastoma cells in culture and increase levels of ubiquitin and beta-amyloid. In Vitro Cell Dev. Biol. Anim 34:265–274.

    PubMed  CAS  Google Scholar 

  • Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.

    PubMed  CAS  Google Scholar 

  • Sanfeliu C., Hunt A., and Patel A. J. (1990). Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526:241–248.

    PubMed  CAS  Google Scholar 

  • Schapira A. H. (1996). Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 9:260–264.

    PubMed  CAS  Google Scholar 

  • Schilling T., Lehmann F., Ruckert B., and Eder C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J. Physiol. (London) 557:105–120.

    CAS  Google Scholar 

  • Siesjö B. K. (1990). Calcium in the brain under physiological and pathological conditions. Eur. Neurol. 30:3–9.

    PubMed  Google Scholar 

  • Siman R. and Noszek J. C. (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287.

    PubMed  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Stella N., Pellerin L., and Magistretti P. J. (1995). Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: Involvement of a pH-sensitive membrane phospholipase A2. J. Neurosci. 15:3307–3317.

    PubMed  CAS  Google Scholar 

  • Sun G. Y. and Foudin L. L. (1984). On the status of lysolecithin in rat cerebral cortex during ischemia. J. Neurochem. 43:1081–1086.

    PubMed  CAS  Google Scholar 

  • Suzuki Y. J., Forman H. J., and Sevanian A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology & Medicine 22:269–285.

    CAS  Google Scholar 

  • Svensson C. I., Hua X. Y., Protter A. A., Powell H. C., and Yaksh T. L. (2003a). Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. NeuroReport 14:1153–1157.

    CAS  Google Scholar 

  • Svensson C. I., Marsala M., Westerlund A., Calcutt N. A., Campana W. M., Freshwater J. D., Catalano R., Feng Y., Protter A. A., Scott B., and Yaksh T. L. (2003b). Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J. Neurochem. 86:1534–1544.

    CAS  Google Scholar 

  • Thwin M. M., Ong W. Y., Fong C. W., Sato K., Kodama K., Farooqui A. A., and Gopalakrishnakone P. (2003). Secretory phospholipase A2 activity in the normal and kainate injected rat brain, and inhibition by a peptide derived from python serum. Exp. Brain Res. 150:427–433.

    PubMed  CAS  Google Scholar 

  • Toborek M., Malecki A., Garrido R., Mattson M. P., Hennig B., and Young B. (1999). Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J. Neurochem. 73:684–692.

    PubMed  CAS  Google Scholar 

  • Uz T., Pesold C., Longone P., and Manev H. (1998). Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. FASEB J. 12:439–449.

    PubMed  CAS  Google Scholar 

  • Vahidy W. H., Ong W. Y., Farooqui A. A., and Yeo J. F. (2006). Effects of intracerebroventricular injections of free fatty acids, lysophospholipids, or platelet activating factor in a mouse model of orofacial pain. Exp. Brain Res. 174:781–785.

    PubMed  CAS  Google Scholar 

  • Wang J. Q., Tang Q. S., Parelkar N. K., Liu Z. G., Samdani S., Choe E. S., Yang L., and Mao L. M. (2004). Glutamate signaling to Ras-MAPK in striatal neurons - Mechanisms for inducible gene expression and plasticity. Mol. Neurobiol. 29:1–14.

    PubMed  Google Scholar 

  • Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.

    PubMed  CAS  Google Scholar 

  • Webber K. O. and Hajra A. K. (1993). Purification of dihydroxyacetone phosphate acyltransferase from guinea pig liver peroxisomes. Arch. Biochem. Biophys. 300:88–97.

    PubMed  CAS  Google Scholar 

  • Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742.

    PubMed  CAS  Google Scholar 

  • Wolfe L. S. and Horrocks L. A. (1994). Eicosanoids. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp. 475–490.

    Google Scholar 

  • Woodruff R. H. and Franklin R. J. M. (1999). The expression of myelin protein mRNAs during remyelination of lysolecithin-induced demyelination. Neuropathol. Appl. Neurobiol. 25:226–235.

    PubMed  CAS  Google Scholar 

  • Xu Y. and Tao Y. X. (2004). Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity. NeuroReport 15:263–266.

    PubMed  CAS  Google Scholar 

  • Xu Y., Zhang B. S., Hua Z. C., Johns R. A., Bredt D. S., and Tao Y. X. (2004). Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp. Neurol. 189:16–24.

    PubMed  CAS  Google Scholar 

  • Yegin A., Akbas S. H., Ozben T., and Korgun D. K. (2002). Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol. Scand. 106:258–262.

    PubMed  CAS  Google Scholar 

  • Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.

    PubMed  CAS  Google Scholar 

  • Zapata A., Capdevila J. L., and Trullas R. (1998). Region-specific and calcium-dependent increase in dialysate choline levels by NMDA. J. Neurosci. 18:3597–3605.

    PubMed  CAS  Google Scholar 

  • Zhang J. P. and Sun G. Y. (1995). Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J. Neurochem. 64:1688–1695.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A., Ong, WY., Horrocks, L.A. (2008). Excitatory Amino Acid Receptors and Their Association with Neural Membrane Glycerophospholipid Metabolism. In: Neurochemical Aspects of Excitotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73023-3_5

Download citation

Publish with us

Policies and ethics