Advertisement

Multiplicity of Glutamate Receptors in Brain

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks

Keywords

NMDA Receptor Glutamate Receptor AMPA Receptor Receptor Subunit Metabotropic Glutamate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baethmann A. (1990). Pathophysiology of acute brain damage following epilepsy. Acta Neurochir. Suppl. (Wien.) 50:14–18.Google Scholar
  2. Ben-Ari Y. and Cossart R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23:580–587.PubMedCrossRefGoogle Scholar
  3. Borza I. and Domany G. (2006). NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore. Curr. Top. Med. Chem. 6:687–695.PubMedCrossRefGoogle Scholar
  4. Burnashev N., Monyer H., Seeburg P. H., and Sakmann B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198.PubMedCrossRefGoogle Scholar
  5. Chittajallu R., Braithwaite S. P., Clarke V. R. J., and Henley J. M. (1999). Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol. Sci. 20:26–35.PubMedCrossRefGoogle Scholar
  6. Ehlers M. D., Zhang S., Bernhadt J. P., and Huganir R. L. (1996). Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755.PubMedCrossRefGoogle Scholar
  7. Frederickson C. J., Maret W., and Cuajungco M. P. (2004). Zinc and excitotoxic brain injury: a new model. Neuroscientist 10:18–25.PubMedCrossRefGoogle Scholar
  8. Greger I. H., Akamine P., Khatri L., and Ziff E. B. (2006). Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis. Neuron 51:85–97.PubMedCrossRefGoogle Scholar
  9. Grooms S. Y., Noh K. M., Regis R., Bassell G. J., Bryan M. K., Carroll R. C., and Zukin R. S. (2006). Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J. Neurosci. 26:8339–8351.PubMedCrossRefGoogle Scholar
  10. Hynd M. R., Scott H. L., and Dodd P. R. (2001). GlutamateNMDA receptor NR1 subunit mRNA expression in Alzheimer’s disease. J. Neurochem. 78:175–182.PubMedCrossRefGoogle Scholar
  11. Ibrahim H. M., Healy D. J., Hogg A. J., Jr., and Meador-Woodruff J. H. (2000). Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus. Brain Res. Mol. Brain Res. 79:1–17.PubMedCrossRefGoogle Scholar
  12. Ishii T., Moriyoshi K., Sugihara H., Sakurada K., Kadotani H., Yokoi M., Akazawa C., Shigemoto R., Mizuno N., Masu M., and Nakanashi S. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268:2836–2843.PubMedGoogle Scholar
  13. Jaskolski F., Normand E., Mulle C., and Coussen F. (2005). Differential trafficking of GluR7 kainate receptor subunit splice variants. J. Biol. Chem. 280:22968–22976.PubMedCrossRefGoogle Scholar
  14. Kamiya H. (2002). Kainate receptor-dependent presynaptic modulation and plasticity. Neurosci. Res. 42:1–6.PubMedCrossRefGoogle Scholar
  15. Kobayashi K., Manabe T., and Takahashi T. (1996). Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648–650.PubMedCrossRefGoogle Scholar
  16. Laurie D. J. and Seeburg P. H. (1994). Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14:3180–3194.PubMedGoogle Scholar
  17. Lynch D. R. and Guttmann R. P. (2001). NMDA receptor pharmacology: perspectives from molecular biology. Curr. Drug Targets 2:215–231.PubMedCrossRefGoogle Scholar
  18. Mayer M. L. (2005). Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45:539–552.PubMedCrossRefGoogle Scholar
  19. Michaelis E. K. (1998). Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54:369–415.PubMedCrossRefGoogle Scholar
  20. Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and Seeburg P. (1992). Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256:1217–1221.PubMedCrossRefGoogle Scholar
  21. Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., and Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354:31–37.PubMedCrossRefGoogle Scholar
  22. Mulle C., Sailer A., Perez-Otano I., Dickinson-Anson H., Castillo P. E., Bureau I., Maron C., Gage F. H., Mann J. R., Bettler B., and Heinemann S. F. (1998). Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605.PubMedCrossRefGoogle Scholar
  23. Mulle C., Sailer A., Swanson G. T., Brana C., O’Gorman S., Bettler B., and Heinemann S. F. (2000). Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28:475–484.PubMedCrossRefGoogle Scholar
  24. Nakamura M., Sato K., Fukaya M., Araishi K., Aiba A., Kano M., and Watanabe M. (2004). Signaling complex formation of phospholipase Cβ4 with metabotropic glutamate receptor type 1α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. Eur. J. Neurosci. 20:2929–2944.PubMedCrossRefGoogle Scholar
  25. Nicoll R. A. and Malenka R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115–118.PubMedCrossRefGoogle Scholar
  26. Nicoll R. A., Tomita S., and Bredt D. S. (2006). Auxiliary subunits assist AMPA-type glutamate receptors. Science 311:1253–1256.PubMedCrossRefGoogle Scholar
  27. Niethammer M., Valtschanoff J. G., Kapoor T. M., Allison D. W., Weinberg T. M., Craig A. M., and Sheng M. (1998). CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 20:693–707.PubMedCrossRefGoogle Scholar
  28. Oh M. C., Derkach V. A., Guire E. S., and Soderling T. R. (2006). Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281:752–758.PubMedCrossRefGoogle Scholar
  29. Paternain A. V., Herrera M. T., Nieto M. A., and Lerma J. (2000). GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20:196–205.PubMedGoogle Scholar
  30. Ruiz A., Sachidhanandam S., Utvik J. K., Coussen F., and Mulle C. (2005). Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. J. Neurosci. 25:11710–11718.PubMedCrossRefGoogle Scholar
  31. Schmitz D., Mellor J., Frerking M., and Nicoll R. A. (2001). Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA 98:11003–11008.PubMedCrossRefGoogle Scholar
  32. Schrattenholz A. and Soskic V. (2006). NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate signalling. Curr. Top. Medicinal Chem. 6:663–686.CrossRefGoogle Scholar
  33. Simonyi A., Ngomba R. T., Storto M., Catania M. V., Miller L. A., Youngs B., DiGiorgi-Gerevini V., Nicoletti F., and Sun G. Y. (2005). Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging. Brain Res. 1043:95–106.PubMedCrossRefGoogle Scholar
  34. Smothers C. T. and Woodward J. J. (2003). Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors. Brain Res. 987:117–121.PubMedCrossRefGoogle Scholar
  35. Song I. and Huganir R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25:578–588.PubMedCrossRefGoogle Scholar
  36. Sun L., Margolis F. L., Shipley M. T., and Lidow M. S. (1998). Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain. FEBS Lett. 441:392–396.PubMedCrossRefGoogle Scholar
  37. Sun H., Kawahara Y., Ito K., Kanazawa I., and Kwak S. (2005). Expression profile of AMPA receptor subunit mRNA in single adult rat brain and spinal cord neurons in situ. Neurosci. Res. 52:228–234.PubMedCrossRefGoogle Scholar
  38. Swanson C. J., Bures M., Johnson M. P., Linden A. M., Monn J. A., and Schoepp D. D. (2005). Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov. 4:131–144.PubMedCrossRefGoogle Scholar
  39. Vanhoose A. M., Clements J. M., and Winder D. G. (2006). Novel blockade of protein kinase A-mediated phosphorylation of AMPA receptors. J. Neurosci. 26:1138–1145.PubMedCrossRefGoogle Scholar
  40. Wang J. Q., Arora A., Yang L., Parelkar N. K., Zhang G., Liu X., Choe E. S., and Mao L. (2005). Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol. Neurobiol. 32:237–249.PubMedCrossRefGoogle Scholar
  41. Weston M. C., Gertler C., Mayer M. L., and Rosenmund C. (2006). Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate. J. Neurosci. 26:7650–7658.PubMedCrossRefGoogle Scholar
  42. Wong E., Ng F. M., Yu C. Y., Lim P., Lim L. H., Traynelis S. F., and Low C. M. (2005). Expression and characterization of soluble amino-terminal domain of NR2B subunit of N-methyl-D-aspartate receptor. Protein Sci. 14:2275–2283.PubMedCrossRefGoogle Scholar
  43. Wong A. Y., Fay A. M., and Bowie D. (2006). External ions are coactivators of kainate receptors. J. Neurosci. 26:5750–5755.PubMedCrossRefGoogle Scholar
  44. Yamakura T. and Shimoji K. (1999). Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog. Neurobiol. 59:279–298.PubMedCrossRefGoogle Scholar
  45. Yuan H., Erreger K., Dravid S. M., and Traynelis S. F. (2005). Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J. Biol. Chem. 280:29708–29716.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations