Excitatory Amino Acid Receptors in Brain

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


NMDA Receptor AMPA Receptor Metabotropic Glutamate Receptor Kainic Acid Kainate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates B., Xie Y., Taylor N., Johnson J., Wu L., Kwak S., Blatcher M., Gulukota K., and Paulsen J. E. (2002). Characterization of mGluR5R, a novel, metabotropic glutamate receptor 5-related gene. Brain Res. Mol. Brain Res. 109:18–33.PubMedCrossRefGoogle Scholar
  2. Ben-Ari Y. and Cossart R. (2000). Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23:580–587.PubMedCrossRefGoogle Scholar
  3. Bonsi P., Cuomo D., De Persis C., Centonze D., Bernardi G., Calabresi P., and Pisani A. (2005). Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology 49(Suppl 1):104–113.PubMedCrossRefGoogle Scholar
  4. Bortolotto Z. A., Clarke V. R., Delany C. M., Parry M. C., Smolders I., Vignes M., Ho K. H., Miu P., Brinton B. T., Fantaske R., Ogden A., Gates M., Ornstein P. L., Lodge D., Bleakman D., and Collingridge G. L. (1999a). Kainate receptors are involved in synaptic plasticity. Nature 402:297–301.CrossRefGoogle Scholar
  5. Bortolotto Z. A., Fitzjohn S. M., and Collingridge G. L. (1999b). Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr. Opin. Neurobiol. 9:299–304.CrossRefGoogle Scholar
  6. Brorson J. R., Manzolillo P. A., and Miller R. J. (1994). Ca2+entry via AMPA/KA receptor and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci. 14:187–197.PubMedGoogle Scholar
  7. Chittajallu R., Braithwaite S. P., Clarke V. R. J., and Henley J. M. (1999). Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol. Sci. 20:26–35.PubMedCrossRefGoogle Scholar
  8. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.CrossRefGoogle Scholar
  9. Christensen J. K., Paternain A. V., Selak S., Ahring P. K., and Lerma J. (2004). A mosaic of functional kainate receptors in hippocampal interneurons. J. Neurosci. 24:8986–8993.PubMedCrossRefGoogle Scholar
  10. Chu Z. and Hablitz J. J. (2000). Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons. Brain Res. 879:88–92.PubMedCrossRefGoogle Scholar
  11. Collingridge G. L. and Bliss T. V. P. (1987). NMDA receptors-their role in long-term potentiation. Trends Neurosci. 10:288–293.CrossRefGoogle Scholar
  12. Endoh T. (2004). Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res. 1024:212–224.PubMedCrossRefGoogle Scholar
  13. Fagg G. E. and Baud J. (1988). Characterization of NMDA receptor-ionophore complexes in the brain. In: Lodge D. (ed.), Excitatory Amino Acids in Health and Disease. John Wiley & Sons, New York, pp. 63–90.Google Scholar
  14. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Neuroprotection abilities of cytosolic phospholipase A2 inhibitors in kainic acid-induced neurodegeneration. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4:85–96.Google Scholar
  15. Frandsen A., Krogsgaard-Larsen P., and Schousboe A. (1990). Novel glutamate receptor antagonists selectively protect against kainic acid neurotoxicity in cultured cerebral cortex neurons. J. Neurochem. 55:1821–1823.PubMedCrossRefGoogle Scholar
  16. Guilarte T. R., Miceli R. C., and Jett D. A. (1995). Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development. Neurotoxicology. 16:63–71.PubMedGoogle Scholar
  17. Holopainen I., Enkvist M. O. K., and Akerman K. E. O. (1989). Glutamate receptor agonists increase intracellular Ca2+ independently of voltage-gated Ca2+ channels in rat cerebellar granule cells. Neurosci. Lett. 98:57–62.PubMedCrossRefGoogle Scholar
  18. Holopainen I., Louve M., Enkvist M. O. K., and Akerman K. E. O. (1990). Coupling of glutamatergic receptors to changes in intracellular Ca2+ in rat cerebellar granule cells in primary culture. J. Neurosci. Res. 25:187–193.PubMedCrossRefGoogle Scholar
  19. Huang E. P. (1997). Metal ions and synaptic transmission: think zinc. Proc. Natl. Acad. Sci. USA 94:13386–13387.PubMedCrossRefGoogle Scholar
  20. Kidd F. L., Coumis U., Collingridge G. L., Crabtree J. W., and Isaac J. T. (2002). A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron 34:635–646.PubMedCrossRefGoogle Scholar
  21. Lerma J. (1997). Kainate reveals its targets. Neuron 19:1155–1158.PubMedCrossRefGoogle Scholar
  22. Lerma J., Paternain A. V., Rodriguez-Moreno A., and Lopez-Garcia J. C. (2001). Molecular physiology of kainate receptors. Physiol. Rev. 81:971–998.PubMedGoogle Scholar
  23. Lester R. A. J., Herron C. E., Coan E. J., and Collingridge G. L. (1988). The role of NMDA receptors in synaptic plasticity and transmission in the hippocampus. In: Lodge D. (ed.), Excitatory Amino Acids in Health and Disease. John Wiley & Sons Ltd., New York, pp. 275–295.Google Scholar
  24. MacDermott A. B., Mayer M. L., Westbrook G. L., Smith S. J., and Barker J. L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522.PubMedCrossRefGoogle Scholar
  25. Managhan D. T., Holets V. R., Toy D. W., and Cotman C. W. (1983). Anatomical distribution of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306:176–179.CrossRefGoogle Scholar
  26. Mayer M. L. and Westbrook G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28:197–276.PubMedCrossRefGoogle Scholar
  27. Meldrum B. and Garthwaite J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11:379–387.PubMedCrossRefGoogle Scholar
  28. Michaelis E. K. (1998). Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol. 54:369–415.PubMedCrossRefGoogle Scholar
  29. Monaghan D. T., Bridges R. J., and Cotman C. W. (1989). The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365–402.PubMedCrossRefGoogle Scholar
  30. Murphy S. N. and Miller R. J. (1988). A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 85:8737–8741.PubMedCrossRefGoogle Scholar
  31. Olney J. W. (1989). Excitotoxicity and N-methyl-D-aspartate receptors. Drug Dev. Res. 17:299–319.CrossRefGoogle Scholar
  32. Olverman H. J., Monaghan D. T., Cotman C. W., and Watkins J. C. (1986). [3H]CPP, a new competitive ligand for NMDA receptors. Eur. J. Pharmacol. 131:161–162.PubMedCrossRefGoogle Scholar
  33. Ong W. Y., He Y., Suresh S., and Patel S. C. (1997). Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367.PubMedCrossRefGoogle Scholar
  34. Ong W. Y., Ren M. Q., Makjanic J., Lim T. M., and Watt F. (1999). A nuclear microscopic study of elemental changes in the rat hippocampus after kainate-induced neuronal injury. J. Neurochem. 72:1574–1579.PubMedCrossRefGoogle Scholar
  35. Ong W. Y., Goh E. W. S., Lu X. R., Farooqui A. A., Patel S. C., and Halliwell B. (2003). Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Path. 13:250–262.CrossRefGoogle Scholar
  36. Ozawa S., Iino M., and Tsuzuki K. (1991). Two types of kainate response in cultured rat hippocampal neurons. J. Neurophysiol. 66:2–11.PubMedGoogle Scholar
  37. Paternain A. V., Herrera M. T., Nieto M. A., and Lerma J. (2000). GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20:196–205.PubMedGoogle Scholar
  38. Pedregal C., Collado I., Escribano A., Ezquerra J., Dominguez C., Mateo A. I., Rubio A., Baker S. R., Goldsworthy J., Kamboj R. K., Ballyk B. A., Hoo K., and Bleakman D. (2000). 4-Alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists. J. Medicinal Chem. 43:1958–1968.CrossRefGoogle Scholar
  39. Pérez-Otaño I. and Ehlers M. D. (2004). Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13:175–189.PubMedCrossRefGoogle Scholar
  40. Petrou S., Ordway R. W., Singer J. J., and Walsh J. V. (1993). A putative fatty acid-binding domain of the NMDA receptor. Trends Biochem. Sci. 18:41–42.PubMedCrossRefGoogle Scholar
  41. Pfrieger F. W. (2003). Role of cholesterol in synapse formation and function. Biochim. Biophys. Acta Biomembr. 1610:271–280.CrossRefGoogle Scholar
  42. Ransom R. W. and Stec N. L. (1988). Cooperative modulation of [3H]-MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J. Neurochem. 51:830–836.PubMedCrossRefGoogle Scholar
  43. Roger G., Dollé F., de Bruin B., Liu X., Besret L., Bramoullè Y., Coulon C., Ottaviani M., Bottlaender M., Valette H., and Kassiou M. (2004). Radiosynthesis and pharmacological evaluation of [11C]EMD-95885: a high affinity ligand for NR2B-containing NMDA receptors. Bioorg. Med. Chem. 12:3229–3237.PubMedCrossRefGoogle Scholar
  44. Ruel J., Guitton M. J., and Puell J. L. (2002). Negative allosteric modulation of AMPA-preferring receptors by the selective isomer GYKI 53784 (LY303070), a specific non-competitive AMPA antagonist. CNS Drug Rev. 8:235–254.PubMedCrossRefGoogle Scholar
  45. Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.PubMedCrossRefGoogle Scholar
  46. Schoepp D., Bockaert J., and Sladeczek F. (1990). Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol. Sci. 11:508–515.PubMedCrossRefGoogle Scholar
  47. Singh L., Oles R., and Woodruff G. (1990). In vivo interaction of a polyamine with the NMDA receptor. Eur. J. Pharmacol. 180:391–392.PubMedCrossRefGoogle Scholar
  48. Sperk G. (1994). Kainic acid seizures in the rat. Prog. Neurobiol. 42:1–32.PubMedCrossRefGoogle Scholar
  49. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedCrossRefGoogle Scholar
  50. Weiss J. H. and Sensi S. L. (2000). Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23:365–371.PubMedCrossRefGoogle Scholar
  51. Westbrook G. L. and Mayer M. L. (1987). Micromolar concentrations of Zn++ antagonize NMDA and GABA responses of hippocampal neurones. Nature 328:640.PubMedCrossRefGoogle Scholar
  52. Wood P. L., Rao T. S., Iyengar S., Lanthorn T., Monahan J., Cordi A., Sun E., Vazquez M., Gray N., and Contreras P. (1990). A review of the in vitro and in vivo neurochemical characterization of the NMDA/PCP/glycine/ion channel receptor macrocomplex. Neurochem. Res. 15:217–230.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations