Advertisement

Future Perspectives: New Strategies for Antagonism of Excitotoxicity, Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks

Keywords

Oxidative Stress Spinal Cord Injury Amyotrophic Lateral Sclerosis Neurodegenerative Disease Alzheimer Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.PubMedGoogle Scholar
  2. Afman L. and Muller M. (2006). Nutrigenomics: from molecular nutrition to prevention of disease. J. Am. Diet. Assoc. 106:569–576.PubMedGoogle Scholar
  3. Allan S. M. and Rothwell N. J. (2003). Inflammation in central nervous system injury. Philos. Trans. R. Soc. Lond B Biol. Sci. 358:1669–1677.PubMedGoogle Scholar
  4. Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Med. 10:S18–S25.PubMedGoogle Scholar
  5. Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.Google Scholar
  6. Anrather J., Racchumi G., and Iadecola C. (2006). NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281:5657–5667.PubMedGoogle Scholar
  7. Araque A., Li N., Doyle R. T., and Haydon P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.PubMedGoogle Scholar
  8. Arita M., Oh S. F., Chonan T., Hong S., Elangovan S., Sun Y. P., Uddin J., Petasis N. A., and Serhan C. N. (2006). Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281:22847–22854.PubMedGoogle Scholar
  9. Barcelò-Coblijn G., Kitajka K., Puskàs L. G., Högyes E., Zvara A., Hackler L., Jr., and Farkas T. (2003). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim. Biophys. Acta 1632:72–79.PubMedGoogle Scholar
  10. Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.Google Scholar
  11. Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Path. 15:159–166.Google Scholar
  12. Bazan N. G. (2005c). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.Google Scholar
  13. Bazan N. G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.PubMedGoogle Scholar
  14. Bazan N. G., Marcheselli V. L., and Cole-Edwards K. (2005). Brain response to injury and neurodegeneration-Endogenous neuroprotective signaling. In: Slikker W., Andrews R. J., and Trembly B. (eds.), Neuroprotective Agents. Annals of the New York Academy of Sciences, New York, pp. 137–147.Google Scholar
  15. Bechoua S., Dubois M., Vericel E., Chapuy P., Lagarde M., and Prigent A. F. (2003). Influence of very low dietary intake of marine oil on some functional aspects of immune cells in healthy elderly people. Br. J. Nutr. 89:523–531.PubMedGoogle Scholar
  16. Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.PubMedGoogle Scholar
  17. Berman K. and Brodaty H. (2004). Tocopherol (vitamin E) in Alzheimer’s disease and other neurodegenerative disorders. CNS Drugs 18:807–825.PubMedGoogle Scholar
  18. Bernaudin M., Nouvelot A., MacKenzie E. T., and Petit E. (1998). Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp. Neurol. 150:30–39.PubMedGoogle Scholar
  19. Bosetti F., Bell J. M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.PubMedGoogle Scholar
  20. Bowers-Gentry R. C., Deems R. A., Harkewicz R., and Dennis E. A. (2006). Eicosanoid lipidomics. In: Feng L. and Prestwich G. D. (eds.), Functional Lipidomics. CRC Press-Taylor & Francis Group, Boca Raton, pp. 79–100.Google Scholar
  21. Butterfield D. A., Perluigi M., and Sultana R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol. 545:39–50.PubMedGoogle Scholar
  22. Calder P. C. (2004). n-3 Fatty acids, inflammation, and immunity - Relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.PubMedGoogle Scholar
  23. Calder P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochem. Soc. Trans. 33:423–427.PubMedGoogle Scholar
  24. Calder P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83:1505S–1519S.PubMedGoogle Scholar
  25. Calon F., Lim G. P., Yang F. S., Morihara T., Teter B., Ubeda O., Rostaing P., Triller A., Salem N. J., Ashe K. H., Frautschy S. A., and Cole G. M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645.PubMedGoogle Scholar
  26. Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75:259–269.Google Scholar
  27. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J. C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.PubMedGoogle Scholar
  28. Champeil-Potokar G., Chaumontet C., Guesnet P., Lavialle M., and Denis I. (2006). Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes. Eur. J. Neurosci. 24:3084–3090.PubMedGoogle Scholar
  29. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.Google Scholar
  30. Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.PubMedGoogle Scholar
  31. Cole G. M. and Frautschy S. A. (2006). Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health 18:249–259.PubMedGoogle Scholar
  32. Cordain L., Eaton S. B., Sebastian A., Mann N., Lindeberg S., Watkins B. A., O’Keefe J. H., and Brand-Miller J. (2005). Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354.PubMedGoogle Scholar
  33. Correale J. and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 251:1304–1316.PubMedGoogle Scholar
  34. Craft J. M., Watterson D. M., and Van Eldik L. J. (2005). Neuroinflammation: a potential therapeutic target. Expert Opin. Ther. Targets 9:887–900.PubMedGoogle Scholar
  35. Danbolt N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105.PubMedGoogle Scholar
  36. De Caterina R. and Massaro M. (2005). Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J. Membr. Biol. 206:103–116.PubMedGoogle Scholar
  37. Deckelbaum R. J., Worgall T. S., and Seo T. (2006). n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83:1520S–1525S.PubMedGoogle Scholar
  38. Denys A., Hichami A., and Khan N. A. (2005). n-3PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κ B signaling pathway. J. Lipid Res. 46:752–758.PubMedGoogle Scholar
  39. Dwyer B. E., Takeda A., Zhu X. W., Perry G., and Smith M. A. (2005). Ferric cycle activity and Alzheimer disease. Curr. Neurovasc. Res. 2:261–267.PubMedGoogle Scholar
  40. Esposito E., Rotilio D., Di Matteo V., Di Giulio C., Cacchio M., and Algeri S. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging 23:719–735.PubMedGoogle Scholar
  41. Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. 6:177–184.Google Scholar
  42. Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J. E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 97:6362–6366.PubMedGoogle Scholar
  43. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  44. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  45. Farooqui A. A. and Horrocks L. A. (2004). Beneficial effects of docosahexaenoic acid on health of the human brain. Agro Food Industry Hi-Tech 15:52–53.Google Scholar
  46. Farooqui A. A. and Horrocks L. A. (2006a). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.Google Scholar
  47. Farooqui A. A. and Horrocks L. A. (2007a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry, Lajtha, A. (ed.) Springer, New York, in press.Google Scholar
  48. Farooqui A. A. and Horrocks L. A. (2007b). Glycerophospholipids in the Brain: PhospholipasesA2 in Neurological Disorders, pp.1–394. Springer, New York.Google Scholar
  49. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  50. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  51. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.PubMedGoogle Scholar
  52. Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.PubMedGoogle Scholar
  53. Floyd R. A. and Hensley K. (2002). Oxidative stress in brain aging-Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23:795–807.PubMedGoogle Scholar
  54. Freund-Levi Y., Eriksdotter-Jönhagen M., Cederholm T., Basun H., Faxèn-Irving G., Garlind A., Vedin I., Vessby B., Wahlund L. O., and Palmblad J. (2006). ω-3 Fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study - A randomized double-blind trial. Arch. Neurol. 63:1402–1408.PubMedGoogle Scholar
  55. Frey R. S., Gao X., Javaid K., Siddiqui S. S., Rahman A., and Malik A. B. (2006). Phosphatidylinositol 3-kinase γ signaling through protein kinase Cζ induces NADPH oxidase-mediated oxidant generation and NF-κactivation in endothelial cells. J. Biol. Chem. 281:16128–16138.PubMedGoogle Scholar
  56. Gasparini L., Ongini E., and Wenk G. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem. 91:521–536.PubMedGoogle Scholar
  57. German J. B., Gillies L. A., Smilowitz J. T., Zivkovic A. M., and Watkins S. M. (2007). Lipidomics and lipid profiling in metabolomics. Curr. Opin. Lipidol. 18:66–71.PubMedGoogle Scholar
  58. Gilgun-Sherki Y., Melamed E., and Offen D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975.PubMedGoogle Scholar
  59. Gilgun-Sherki Y., Rosenbaum Z., Melamed E., and Offen D. (2002). Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54:271–284.PubMedGoogle Scholar
  60. Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr. Pharmaceut. Design 12:3509–3519.Google Scholar
  61. Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.PubMedGoogle Scholar
  62. Grant W. B. (1997). Dietary links to Alzheimer’s disease. Alz. Disease Rev. 2:42–55.Google Scholar
  63. Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J. (2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease - Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural Transm. 109:837–855.PubMedGoogle Scholar
  64. Hashimoto M., Hossain S., Agdul H., and Shido O. (2005). Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid β-infused rats relates to the decreases of amyloid β and cholesterol levels in detergent-insoluble membrane fractions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1738:91–98.Google Scholar
  65. Hodge W. G., Barnes D., Schachter H. M., Pan Y. I., Lowcock E. C., Zhang L., Sampson M., Morrison A., Tran K., Miguelez M., and Lewin G. (2006). The evidence for efficacy ofomega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can. J. Ophthalmol. 41:481–490.PubMedGoogle Scholar
  66. Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. M. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedGoogle Scholar
  67. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedGoogle Scholar
  68. Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.PubMedGoogle Scholar
  69. Hossain M. S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.PubMedGoogle Scholar
  70. Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 72:1133–1138.PubMedGoogle Scholar
  71. Huang M. T., Ghai G., and Ho C. T. (2004). Inflammatory process and molecular targets for anti-inflammatory nutraceuticals. Compr. Rev. Food Sci. Food Safety 3:127–139.Google Scholar
  72. Hunt A. N. and Postle A. D. (2006). Mass spectrometry determination of endonuclear phospholipid composition and dynamics. Methods 39:104–111.PubMedGoogle Scholar
  73. Imbimbo B. P. (2004). The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer’s disease. Expert Opin. Invest. Drugs 13:1469–1481.Google Scholar
  74. Isbilen B., Fraser S. P., and Djamgoz M. B. A. (2006). Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int. J. Biochem. Cell Biol. 38:2173–2182.PubMedGoogle Scholar
  75. Itokazu N., Ikegaya Y., Nishikawa M., and Matsuki N. (2000). Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in vivo. Brain Res. 862:211–216.PubMedGoogle Scholar
  76. Jabaudon D., Scanziani M., Gahwiler B. H., and Gerber U. (2000). Acute decrease in net glutamate uptake during energy deprivation. Proc. Natl. Acad. Sci. USA 97:5610–5615.PubMedGoogle Scholar
  77. Jellinger K. A. (2001). Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5:1–17.PubMedGoogle Scholar
  78. Joardar A., Sen A. K., and Das S. (2006). Docosahexaenoic acid facilitates cell maturation and β-adrenergic transmission in astrocytes. J. Lipid Res. 47:571–581.PubMedGoogle Scholar
  79. Johnson E. J. and Schaefer E. J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. Am. J. Clin. Nutr. 83:1494S–1498S.PubMedGoogle Scholar
  80. Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: reactive oxygen species - Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.PubMedGoogle Scholar
  81. Kalmijn S., Van Boxtel M. P. J., Ockè M., Verschuren W. M. M., Kromhout D., and Launer L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280.PubMedGoogle Scholar
  82. Katchman A. N. and Hershkowitz N. (1993). Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. J. Neurophysiol. 70:1–7.PubMedGoogle Scholar
  83. Kawakita E., Hashimoto M., and Shido O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991–997.PubMedGoogle Scholar
  84. Kidd P. M. (2005). Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern. Med. Rev. 10:268–293.PubMedGoogle Scholar
  85. Kim K. M., Jung B. H., Paeng K. J., Kim I., and Chung B. C. (2004). Increased urinary F2-isoprostanes levels in the patients with Alzheimer’s disease. Brain Res. Bull. 64:47–51.PubMedGoogle Scholar
  86. Kimelberg H. K. and Mongin A. A. (1998). Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology. Contrib. Nephrol. 123:240–257.PubMedGoogle Scholar
  87. King V. R., Huang W. L., Dyall S. C., Curran O. E., Priestley J. V., and Michael-Titus A. T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 26:4672–4680.PubMedGoogle Scholar
  88. Kitajka K., Puskàs L. G., Zvara A., Hackler L. J., Barcelò-Coblijn G., Yeo Y. K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA 99:2619–2624.PubMedGoogle Scholar
  89. Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.PubMedGoogle Scholar
  90. Leker R. R. and Shohami E. (2002). Cerebral ischemia and trauma - different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 39:55–73.PubMedGoogle Scholar
  91. Lim W. S., Gammack J. K., Van Niekerk J., and Dangour A. D. (2006). Omega 3 fatty acid for the prevention of dementia. Cochrane Database of Systematic Reviews 2006:Art. No. CD005379. doi:10.1002/14651858.Google Scholar
  92. Liu W., Liu R., Schreiber S. S., and Baudry M. (2001). Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures. J. Neurochem. 79:976–984.PubMedGoogle Scholar
  93. Liu H. T., Tashmukhamedov B. A., Inoue H., Okada Y., and Sabirov R. Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357.PubMedGoogle Scholar
  94. Lu Y., Hong S., Gotlinger K., and Serhan C. N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. The Scientific World J. 6:589–614.Google Scholar
  95. Lucas S. M., Rothwell N. J., and Gibson R. M. (2006). The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147(Suppl 1):S232–S240.PubMedGoogle Scholar
  96. Luchsinger J. A., Tang M. X., Shea S., and Mayeux R. (2003). Antioxidant vitamin intake and risk of Alzheimer disease. Arch. Neurol. 60:203–208.PubMedGoogle Scholar
  97. Luers G. H., Thiele S., Schad A., Volkl A., Yokota S., and Seitz J. (2006). Peroxisomes are present in murine spermatogonia and disappear during the course of spermatogenesis. Histochem. Cell Biol. 125:693–703.PubMedGoogle Scholar
  98. Lukiw W. J. and Bazan N. G. (2006). Survival signalling in Alzheimer’s disease. Biochem. Soc. Trans. 34:1277–1282.PubMedGoogle Scholar
  99. Lukiw W. J., Cui J. G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest 115:2774–2783.PubMedGoogle Scholar
  100. Marszalek J. R. and Lodish H. F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu. Rev. Cell Dev. Biol. 21:633–657.PubMedGoogle Scholar
  101. Masters C. L., Cappai R., Barnham K. J., and Villemagne V. L. (2006). Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J. Neurochem. 97:1700–1725.PubMedGoogle Scholar
  102. Mayer K., Schaefer M. B., and Seeger W. (2006). Fish oil in the critically ill: from experimental to clinical data. Curr. Opin. Clin. Nutr. Metab. Care 9:140–148.PubMedGoogle Scholar
  103. McIntosh T. K., Saatman K. E., Raghupathi R., Graham D. I., Smith D. H., Lee V. M., and Trojanowski J. Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.PubMedGoogle Scholar
  104. Miggiano G. A. D. and De Sanctis R. (2006). Nutrigenomica: verso una dieta personalizzata [Nutritional genomics: toward a personalized diet]. Clin. Ter. 157:355–361.PubMedGoogle Scholar
  105. Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., and Murri L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol. Aging 26:587–595.PubMedGoogle Scholar
  106. Miller A. A., Drummond G. R., and Sobey C. G. (2006). Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther. 111:928–948.PubMedGoogle Scholar
  107. Milne S., Ivanova P., Forrester J., and Brown H. A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92–103.PubMedGoogle Scholar
  108. Mori T. A. (2006). Omega-3 fatty acids and hypertension in humans. Clin. Exp. Pharmacol. Physiol. 33:842–846.PubMedGoogle Scholar
  109. Mori T. A. and Beilin L. J. (2004). Omega-3 fatty acids and inflammation. Curr. Atheroscler. Rep. 6:461–467.PubMedGoogle Scholar
  110. Morrow J. D. (2006). The isoprostanes - Unique products of arachidonate peroxidation: Their role as mediators of oxidant stress. Curr. Pharmaceut. Design 12:895–902.Google Scholar
  111. Nakamura K., Kariyazono H., Komokata T., Hamada N., Sakata R., and Yamada K. (2005). Influence of preoperative administration of omega-3 fatty acid- enriched supplement on inflammatory and immune responses in patients undergoing major surgery for cancer. Nutrition 21:639–649.PubMedGoogle Scholar
  112. Nalsen C., Vessby B., Berglund L., Uusitupa M., Hermansen K., Riccardi G., Rivellese A., Storlien L., Erkkila A., Yla-Herttuala S., Tapsell L., and Basu S. (2006). Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2α in healthy humans. J. Nutr. 136:1222–1228.PubMedGoogle Scholar
  113. Newcomb R., Sun X. Y., Taylor L., Curthoys N., and Giffard R. G. (1997). Increased production of extracellular glutamate by the mitochondrial glutaminase following neuronal death. J. Biol. Chem. 272:11276–11282.PubMedGoogle Scholar
  114. Nicotera P. and Leist M. (1997). Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ. 4:435–442.PubMedGoogle Scholar
  115. Nicotera P. and Lipton S. A. (1999). Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab 19:583–591.PubMedGoogle Scholar
  116. Ohishi H., Shigemoto R., Nakanishi S., and Mizuno N. (1993). Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335:252–266.PubMedGoogle Scholar
  117. Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.PubMedGoogle Scholar
  118. Ordovas J. M. and Corella D. (2004). Nutritional genomics. Annu. Rev. Genomics Hum. Genet. 5:71–118.PubMedGoogle Scholar
  119. Page G., Peeters M., Najimi M., Maloteaux J. M., and Hermans E. (2001). Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J. Neurochem. 76:1282–1290.PubMedGoogle Scholar
  120. Park E., Velumian A. A., and Fehlings M. G. (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 21:754–774.PubMedGoogle Scholar
  121. Perluigi M., Poon H. F., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C., and Butterfield D. A. (2005). Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice - A model of familial amyotrophic lateral sclerosis. Free Radical Biol. Med. 38:960–968.Google Scholar
  122. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.PubMedGoogle Scholar
  123. Polidori M. C. (2004). Oxidative stress and risk factors for Alzheimer’s disease: clues to prevention and therapy. J. Alzheimer’s Dis. 6:185–191.Google Scholar
  124. Prasad K. N., Cole W. C., Hovland A. R., Prasad K. C., Nahreini P., Kumar B., Edwards-Prasad J., and Andreatta C. P. (1999). Multiple antioxidants in the prevention and treatment of neurodegenerative disease: analysis of biologic rationale. Curr. Opin. Neurol. 12:761–770.PubMedGoogle Scholar
  125. Puri B. K. (2005). Treatment of Huntington’s disease with eicosapentaenoic acid. In: Yehuda S. and Mostofsky D. I. (eds.), Nutrients, Stress and Medical Disorders. Nutrition and Health (Series) Humana Press Inc, Totowa, pp. 279–286.Google Scholar
  126. Puskàs L. G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.PubMedGoogle Scholar
  127. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedGoogle Scholar
  128. Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16:243–261.PubMedGoogle Scholar
  129. Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.PubMedGoogle Scholar
  130. Reddy P. H. (2006). Mitochondrial oxidative damage in aging and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics. J. Biomed. Biotechnol. 2006: Art. No. 31372, doi: 10.1155/JBB/2006/31372.Google Scholar
  131. Riederer P. and Hoyer S. (2006). From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J. Neural Transm. 113:1671–1677.PubMedGoogle Scholar
  132. Roettger V. and Lipton P. (1996). Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75:677–685.PubMedGoogle Scholar
  133. Roland I., de Leval X., Evrard B., Pirotte B., Dogne J. M., and Delattre L. (2004). Modulation of the arachidonic cascade with omega 3 fatty acids or analogues: Potential therapeutic benefits. Mini-Rev. Medicin. Chem. 4:659–668.Google Scholar
  134. Rossi D. J., Oshima T., and Attwell D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.PubMedGoogle Scholar
  135. Rothwell N. J. (1999). Annual review prize lecture cytokines - killers in the brain? J. Physiol. (London) 514:3–17.Google Scholar
  136. Rubin B. B., Downey G. P., Koh A., Degousee N., Ghomashchi F., Nallan L., Stefanski E., Harkin D. W., Sun C. X., Smart B. P., Lindsay T. F., Cherepanov V., Vachon E., Kelvin D., Sadilek M., Brown G. E., Yaffe M. B., Plumb J., Grinstein S., Glogauer M., and Gelb M. H. (2005). Cytosolic phospholipase A2-α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection-cPLA2-α does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.PubMedGoogle Scholar
  137. Samadi P., Gregoire L., Rouillard C., Bedard P. J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282–288.PubMedGoogle Scholar
  138. Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.PubMedGoogle Scholar
  139. Serhan C. N. (2005a). Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77:4–14.Google Scholar
  140. Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.Google Scholar
  141. Serhan C. N. (2006). Novel chemical mediators in the resolution of inflammation: Resolvins and protectins. Anesthesiol. Clinics North Am. 24:341–364.Google Scholar
  142. Serhan C. N., Hong S., and Lu Y. (2006). Lipid mediator informatics-lipidomics: Novel pathways in mapping resolution. AAPS J. 8:E284–E297.PubMedGoogle Scholar
  143. Simopoulos A. P. (2002a). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21:495–505.Google Scholar
  144. Simopoulos A. P. (2002b). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56:365–379.Google Scholar
  145. Simopoulos A. P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37:263–277.PubMedGoogle Scholar
  146. Simopoulos A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.PubMedGoogle Scholar
  147. Slusher B. S., Vornov J. J., Thomas A. G., Hurn P. D., Harukuni I., Bhardwaj A., Traystman R. J., Robinson M. B., Britton P., Lu X. C., Tortella F. C., Wozniak K. M., Yudkoff M., Potter B. M., and Jackson P. F. (1999). Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 5:1396–1402.PubMedGoogle Scholar
  148. Smith M. A., Nunomura A., Lee H. G., Zhu X., Moreira P. I., Avila J., and Perry G. (2005). Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol. Aging 26:579–580.Google Scholar
  149. Soule J., Messaoudi E., and Bramham C. R. (2006). Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34:600–604.Google Scholar
  150. Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. in press. AQ[38]Please update this reference entry.Google Scholar
  151. Testa C. M., Standaert D. G., Young A. B., and Penney J. B., Jr. (1994). Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 14:3005–3018.PubMedGoogle Scholar
  152. Tsutsumi T., Yamauchi E., Suzuki E., Watanabe S., Kobayashi T., and Okuyama H. (1995). Effect of a high α-linolenate and high linoleate diet on membrane-associated enzyme activities in rat brain–modulation of Na+, K+-ATPase activity at suboptimal concentrations of ATP. Biol. Pharm. Bull. 18:664–670.PubMedGoogle Scholar
  153. Tuz K., Peña-Segura C., Franco R., and Pasantes-Morales H. (2004). Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur. J. Neurosci. 19:916–924.PubMedGoogle Scholar
  154. Valenzuela A. and Nieto M. S. (2001). Docosahexaenoic acid (DHA) in fetal development and infant nutrition. Revista Med. Chile 129:1203–1211.Google Scholar
  155. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedGoogle Scholar
  156. Wang J. Y., Wen L. L., Huang Y. N., Chen Y. T., and Ku M. C. (2006). Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.Google Scholar
  157. Watson A. D. (2006). Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res. 47:2101–2111.PubMedGoogle Scholar
  158. Wendum D., Svrcek M., Rigau V., Boelle P. Y., Sebbagh N., Parc R., Masliah J., Trugnan G., and Flejou J. F. (2003). COX-2, inflammatory secreted PLA2, and cytoplasmic PLA2 protein expression in small bowel adenocarcinomas compared with colorectal adenocarcinomas. Modern Pathol. 16:130–136.Google Scholar
  159. Weylandt K. H. and Kang J. X. (2005). Rethinking lipid mediators. Lancet 366:618–620.PubMedGoogle Scholar
  160. Wilde G. J. C., Pringle A. K., Wright P., and Iannotti F. (1997). Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J. Neurochem. 69:883–886.PubMedGoogle Scholar
  161. Willcox J. K., Ash S. L., and Catignani G. L. (2004). Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44:275–295.PubMedGoogle Scholar
  162. Williamson P. and Schlegel R. A. (2002). Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585:53–63.Google Scholar
  163. Wood P. L. (1998). Neuroinflammation: Mechanisms and Management. Humana Press, Totowa, New Jersey.Google Scholar
  164. Yamamoto Y. and Gaynor R. B. (2004). IκB kinases: key regulators of the NF-κB pathway. Trends Biochem. Sci. 29:72–79.PubMedGoogle Scholar
  165. Yamazaki R., Kusunoki N., Matsuzaki T., Hashimoto S., and Kawai S. (2002). Nonsteroidal anti-inflammatory drugs induce apoptosis in association with activation of peroxisome proliferator-activated receptor γ in rheumatoid synovial cells. J. Pharmacol. Exp. Ther. 302:18–25.PubMedGoogle Scholar
  166. Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedGoogle Scholar
  167. Yehuda S., Rabinovitz S., and Mostofsky D. I. (2005). Essential fatty acids and the brain: from infancy to aging. Neurobiol. Aging 26(Suppl 1):98–102.PubMedGoogle Scholar
  168. Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure-Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.PubMedGoogle Scholar
  169. Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J. (1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.PubMedGoogle Scholar
  170. Zhang Q., Pangrsic T., Kreft M., Krzan M., Li N., Sul J. Y., Halassa M., Van Bockstaele E., Zorec R., and Haydon P. G. (2004). Fusion-related release of glutamate from astrocytes. J. Biol. Chem. 279:12724–12733.PubMedGoogle Scholar
  171. Zhao J., Lopez A. L., Erichsen D., Herek S., Cotter R. L., Curthoys N. P., and Zheng J. (2004). Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: linkage to HIV-1 associated dementia. J. Neurochem. 88:169–180.PubMedGoogle Scholar
  172. Zhu X. W., Raina A. K., Perry G., and Smith M. A. (2004). Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 3:219–226.PubMedGoogle Scholar
  173. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J. C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations