Glutamate Receptor Antagonists and the Treatment of Neurological Disorders

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


NMDA Receptor Alzheimer Disease Acute Ischemic Stroke Huntington Disease NMDA Receptor Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers G. W., Atkinson R. P., Kelley R. E., and Rosenbaum D. M. (1995). Safety, tolerability, and pharmacokinetics of the N-methyl-D-aspartate antagonist dextrorphan in patients with acute stroke. Dextrorphan Study Group. Stroke 26:254–258.Google Scholar
  2. Albers G. W., Goldstein L. B., Hall D., and Lesko L. M. (2001). Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial. J. Am. Med. Assoc. 286:2673–2682.CrossRefGoogle Scholar
  3. Bordi F., Pietra C., Ziviani L., and Reggiani A. (1997). The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat. Exp. Neurol. 145:425–433.PubMedCrossRefGoogle Scholar
  4. Buisson B. and Bertrand D. (1998). Open-channel blockers at the human α4β2 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53:555–563.PubMedGoogle Scholar
  5. Chadwick D. W., Betts T. A., Boddie H. G., Crawford P. M., Lindstrom P., Newman P. K., Soryal I., Wroe S., and Holdich T. A. (2002). Remacemide hydrochloride as an add-on therapy in epilepsy: a randomized, placebo-controlled trial of three dose levels (300, 600 and 1200 mg/day) in a Q.I.D. regimen. Seizure. 11:114–123.PubMedCrossRefGoogle Scholar
  6. Chen H. S. and Lipton S. A. (2006). The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97:1611–1626.PubMedCrossRefGoogle Scholar
  7. Choi D. W. (1990). Cerebral hypoxia: some new approaches and unanswered questions. J. Neurosci. 10:2493–2501.PubMedGoogle Scholar
  8. Choi Y. B., Tenneti L., Le D. A., Ortiz J., Bai G., Chen H. S., and Lipton S. A. (2000). Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3:15–21.PubMedCrossRefGoogle Scholar
  9. Coderre T. J. (1993). The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol. Neurobiol 7:229–246.PubMedGoogle Scholar
  10. Davis M., Mendelow A. D., Perry R. H., Chambers I. R., and James O. F. (1995). Experimental stroke and neuroprotection in the aging rat brain. Stroke 26:1072–1078.PubMedGoogle Scholar
  11. Davis S. M., Lees K. R., Albers G. W., Diener H. C., Markabi S., Karlsson G., and Norris J. (2000). Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354.PubMedGoogle Scholar
  12. Dickenson A. H. (1990). A cure for wind up: NMDA receptor antagonists as potential analgesics. Trends Pharmacol. Sci. 11:307–309.PubMedCrossRefGoogle Scholar
  13. Doraiswamy P. M. (2002). Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs 16:811–824.PubMedCrossRefGoogle Scholar
  14. Dyker A. G., Edwards K. R., Fayad P. B., Hormes J. T., and Lees K. R. (1999). Safety and tolerability study of aptiganel hydrochloride in patients with an acute ischemic stroke. Stroke 30:2038–2042.PubMedGoogle Scholar
  15. Dyker A. G. and Lees K. R. (1999). Remacemide hydrochloride: a double-blind, placebo-controlled, safety and tolerability study in patients with acute ischemic stroke. Stroke 30: 1796–1801.PubMedGoogle Scholar
  16. Ellison G. (1994). Competitive and non-competitive NMDA antagonists induce similar limbic degeneration. NeuroReport 5:2688–2692.PubMedCrossRefGoogle Scholar
  17. Ellison G. (1995). The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 20:250–267.PubMedCrossRefGoogle Scholar
  18. Endres M., Fink K., Zhu J., Stagliano N. E., Bondada V., Geddes J. W., Azuma T., Mattson M. P., Kwiatkowski D. J., and Moskowitz M. A. (1999). Neuroprotective effects of gelsolin during murine stroke. J. Clin. Invest 103:347–354.PubMedCrossRefGoogle Scholar
  19. Fagg G. E. and Baud J. (1988). Characterization of NMDA receptor-ionophore complexes in the brain. In: Lodge D. (ed.), Excitatory Amino Acids in Health and Disease. John Wiley & Sons, New York, pp. 63–90.Google Scholar
  20. Farin A. and Marshall L. F. (2004). Lessons from epidemiologic studies in clinical trials of traumatic brain injury. Acta Neurochir. Suppl 89:101–107.PubMedGoogle Scholar
  21. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  22. Farooqui A. A. and Horrocks L. A. (2007a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry. Lajtha, A. (ed.). Springer, New York.Google Scholar
  23. Farooqui A. A. and Horrocks L. A. (2007b). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  24. Ferrer-Montiel A. V., Sun W., and Montal M. (1995). Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proc. Natl. Acad. Sci. U.S.A 92:8021–8025.PubMedCrossRefGoogle Scholar
  25. Gallagher M. J., Huang H., Pritchett D. B., and Lynch D. R. (1996). Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 271:9603–9611.PubMedCrossRefGoogle Scholar
  26. Gilron I. and Max M. B. (2005). Combination pharmacotherapy for neuropathic pain: current evidence and future directions. Expert Rev. Neurother. 5:823–830.PubMedCrossRefGoogle Scholar
  27. Gilron I., Max M. B., Lee G., Booher S. L., Sang C. N., Chappell A. S., and Dionne R. A. (2000). Effects of the 2-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid/kainate antagonist LY293558 on spontaneous and evoked postoperative pain. Clin. Pharmacol. Ther. 68:320–327.PubMedCrossRefGoogle Scholar
  28. Grant G., Cadossi R., and Steinberg G. (1994). Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics 15:205–216.PubMedCrossRefGoogle Scholar
  29. Grossberg G. T., Edwards K. R., and Zhao Q. (2006). Rationale for combination therapy with galantamine and memantine in Alzheimer’s disease. J. Clin. Pharmacol. 46:17S–26S.PubMedCrossRefGoogle Scholar
  30. Grotta J., Clark W., Coull B., Pettigrew L. C., Mackay B., Goldstein L. B., Meissner I., Murphy D., and LaRue L. (1995). Safety and tolerability of the glutamate antagonist CGS 19755 (Selfotel) in patients with acute ischemic stroke: results of a phase IIa randomized trial. Stroke 26:602–605.PubMedGoogle Scholar
  31. Grotta J. C., Picone C. M., Ostrow P. T., Strong R. A., Earls R. M., Yao L. P., Rhoades H. M., and Dedman J. R. (1990). CGS-19755, a competitive NMDA receptor antagonist, reduces calcium-calmodulin binding and improves outcome after global cerebral ischemia. Ann. Neurol. 27:612–619.PubMedCrossRefGoogle Scholar
  32. Gustafson I., Westerberg E., and Wieloch T. (1990). Protection against ischemia-induced neuronal damage by the alpha 2-adrenoceptor antagonist idazoxan: influence of time of administration and possible mechanisms of action. J. Cereb. Blood Flow Metab 10:885–894.PubMedGoogle Scholar
  33. Helfaer M. A., Ichord R. N., Martin L. J., Hurn P. D., Castro A., and Traystman R. J. (1998). Treatment with the competitive NMDA antagonist GPI 3000 does not improve outcome after cardiac arrest in dogs. Stroke 29:824–829.PubMedGoogle Scholar
  34. Hewitt D. J. (2000). The use of NMDA-receptor antagonists in the treatment of chronic pain. Clin. J. Pain 16:S73–S79.PubMedCrossRefGoogle Scholar
  35. Jewett D. C., Butelman E. R., and Woods J. H. (1996). Nitric oxide synthase inhibitors produce phencyclidine-like behavioral effects in pigeons. Brain Res. 715:25–31.PubMedCrossRefGoogle Scholar
  36. Kawasaki-Yatsugi S., Ichiki C., Yatsugi S., Takahashi M., Shimizu-Sasamata M., Yamaguchi T., and Minematsu K. (2000). Neuroprotective effects of an AMPA receptor antagonist YM872 in a rat transient middle cerebral artery occlusion model. Neuropharmacology 39:211–217.PubMedCrossRefGoogle Scholar
  37. Kemp J. A. and McKernan R. M. (2002). NMDA receptor pathways as drug targets. Nat. Neurosci. 5:1039–1042.PubMedCrossRefGoogle Scholar
  38. Kilpatrick G. J. and Tilbrook G. S. (2002). Memantine. Merz. Curr. Opin. Investig. Drugs 3:798–806.Google Scholar
  39. Klamer D., Zhang J., Engel J. A., and Svensson L. (2005). Selective interaction of nitric oxide synthase inhibition with phencyclidine: behavioural and NMDA receptor binding studies in the rat. Behav. Brain Res. 159:95–103.PubMedCrossRefGoogle Scholar
  40. Klepstad P. and Borchgrevink P. C. (1997). Four years’ treatment with ketamine and a trial of dextromethorphan in a patient with severe post-herpetic neuralgia. Acta Anaesthesiol. Scand. 41:422–426.PubMedGoogle Scholar
  41. Koch H. J., Uyanik G., and Fischer-Barnicol D. (2005). Memantine: a therapeutic approach in treating Alzheimer’s and vascular dementia. Curr. Drug Targets CNS Neurol. Disord. 4: 499–506.Google Scholar
  42. Kohl B. K. and Dannhardt G. (2001). The NMDA receptor complex: a promising target for novel antiepileptic strategies. Curr. Med. Chem. 8:1275–1289.PubMedGoogle Scholar
  43. Kornhuber J. and Weller M. (1997). Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol. Psychiatry 41:135–144.PubMedCrossRefGoogle Scholar
  44. Koroshetz W. J. and Moskowitz M. A. (1996). Emerging treatments for stroke in humans. Trends Pharmacol. Sci. 17:227–233.PubMedCrossRefGoogle Scholar
  45. Labiche L. A. and Grotta J. C. (2004). Clinical trials for cytoprotection in stroke. NeuroRx. 1:46–70.PubMedCrossRefGoogle Scholar
  46. Lee S. T., Chu K., Park J. E., Kang L., Ko S. Y., Jung K. H., and Kim M. (2006). Memantine reduces striatal cell death with decreasing calpain level in 3-nitropropionic model of Huntington’s disease. Brain Res. 1118:199–207.PubMedCrossRefGoogle Scholar
  47. Lees K. R. (1997). Cerestat and other NMDA antagonists in ischemic stroke. Neurology 49:S66–S69.PubMedGoogle Scholar
  48. Lees K. R., Asplund K., Carolei A., Davis S. M., Diener H. C., Kaste M., Orgogozo J. M., and Whitehead J. (2000). Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators. Lancet 355:1949–1954.Google Scholar
  49. Lipton S. A. (1993). Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 16:527–532.PubMedCrossRefGoogle Scholar
  50. Lipton S. A., Choi Y. B., Sucher N. J., and Chen H. S. (1998). Neuroprotective versus neurodestructive effects of NO-related species. BioFactors 8:33–40.PubMedGoogle Scholar
  51. Lipton S. A., Choi Y. B., Takahashi H., Zhang D., Li W., Godzik A., and Bankston L. A. (2002). Cysteine regulation of protein function–as exemplified by NMDA-receptor modulation. Trends Neurosci. 25:474–480.PubMedCrossRefGoogle Scholar
  52. Lipton S. A. and Rosenberg P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.PubMedCrossRefGoogle Scholar
  53. Lu B. (2003). BDNF and activity-dependent synaptic modulation. Learn. Mem. 10:86–98.PubMedCrossRefGoogle Scholar
  54. Marvanova M., Lakso M., Pirhonen J., Nawa H., Wong G., and Castren E. (2001). The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell Neurosci. 18:247–258.PubMedCrossRefGoogle Scholar
  55. Max M. B. and Hagen N. A. (2000). Do changes in brain sodium channels cause central pain? Neurology 54:544–545.PubMedGoogle Scholar
  56. Minematsu K., Fisher M., Li L., Davis M. A., Knapp A. G., Cotter R. E., McBurney R. N., and Sotak C. H. (1993). Effects of a novel NMDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI. Neurology 43:397–403.PubMedGoogle Scholar
  57. Mori H., Masaki H., Yamakura T., and Mishina M. (1992). Identification by mutagenesis of a Mg2+-block site of the NMDA receptor channel. Nature 358:673–675.PubMedCrossRefGoogle Scholar
  58. Morris G. F., Bullock R., Marshall S. B., Marmarou A., Maas A., and Marshall L. F. (1999). Failure of the competitive N-methyl-D-aspartate antagonist selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J. Neurosurg. 91:737–743.PubMedGoogle Scholar
  59. Muir K. W. (2006). Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 6:53–60.PubMedCrossRefGoogle Scholar
  60. Nelson K. A., Park K. M., Robinovitz E., Tsigos C., and Max M. B. (1997). High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology 48:1212–1218.PubMedGoogle Scholar
  61. Ogren S. O. and Goldstein M. (1994). Phencyclidine- and dizocilpine-induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 11:167–177.PubMedCrossRefGoogle Scholar
  62. Osawa Y. and Davila J. C. (1993). Phencyclidine, a psychotomimetic agent and drug of abuse, is a suicide inhibitor of brain nitric oxide synthase. Biochem. Biophys. Res. Commun. 194:1435–1439.PubMedCrossRefGoogle Scholar
  63. Palmer G. C. (2001). Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr. Drug Targets 2:241–271.PubMedCrossRefGoogle Scholar
  64. Parton A., Coulthard E., and Husain M. (2005). Neuropharmacological modulation of cognitive deficits after brain damage. Curr. Opin. Neurol. 18:675–680.PubMedCrossRefGoogle Scholar
  65. Paul C. and Bolton C. (2002). Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J. Pharmacol. Exp. Ther. 302:50–57.PubMedCrossRefGoogle Scholar
  66. Pettegrew J. W., Klunk W. E., Kanal E., Panchalingam K., and McClure R. J. (1995). Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol. Aging 16:973–975.PubMedCrossRefGoogle Scholar
  67. Planells-Cases R., Lerma J., and Ferrer-Montiel A. (2006). Pharmacological intervention at ionotropic glutamate receptor complexes. Curr. Pharm. Des 12:3583–3596.PubMedCrossRefGoogle Scholar
  68. Rajdev S., Fix A. S., and Sharp F. R. (1998). Acute phencyclidine neurotoxicity in rat forebrain: induction of haem oxygenase-1 and attenuation by the antioxidant dimethylthiourea. Eur. J. Neurosci. 10:3840–3852.PubMedCrossRefGoogle Scholar
  69. Rammes G., Rupprecht R., Ferrari U., Zieglgänsberger W., and Parsons C. G. (2001). The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT3 receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci. Lett. 306:81–84.Google Scholar
  70. Ratan R. R., Murphy T. H., and Baraban J. M. (1994). Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.PubMedCrossRefGoogle Scholar
  71. Reeker W., Werner C., Mollenberg O., Mielke L., and Kochs E. (2000). High-dose S(+)-ketamine improves neurological outcome following incomplete cerebral ischemia in rats. Can. J. Anaesth. 47:572–578.PubMedGoogle Scholar
  72. Reisberg B., Doody R., Stoffler A., Schmitt F., Ferris S., and Mobius H. J. (2003). Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348:1333–1341.PubMedCrossRefGoogle Scholar
  73. Rogawski M. A. and Wenk G. L. (2003). The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev. 9:275–308.PubMedCrossRefGoogle Scholar
  74. Sacco R. L., DeRosa J. T., Haley E. C., Jr., Levin B., Ordronneau P., Phillips S. J., Rundek T., Snipes R. G., and Thompson J. L. (2001). Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. J. Am. Med. Assoc. 285:1719–1728.CrossRefGoogle Scholar
  75. Sang C. N., Booher S., Gilron I., Parada S., and Max M. B. (2002). Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology 96:1053–1061.PubMedCrossRefGoogle Scholar
  76. Sarraf-Yazdi S., Sheng H., Miura Y., McFarlane C., Dexter F., Pearlstein R., and Warner D. S. (1998). Relative neuroprotective effects of dizocilpine and isoflurane during focal cerebral ischemia in the rat. Anesth. Analg. 87:72–78.PubMedCrossRefGoogle Scholar
  77. Schabitz W. R., Li F., and Fisher M. (2000). The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31:1709–1714.PubMedGoogle Scholar
  78. Schehr R. S. (1996). New treatments for acute stroke. Nat. Biotechnol. 14:1549–1554.PubMedCrossRefGoogle Scholar
  79. Schiefermeier M. and Yavin E. (2002). n-3 Deficient and docosahexaenoic acid-enriched diets during critical periods of the developing prenatal rat brain. J. Lipid Res. 43:124–131.PubMedGoogle Scholar
  80. Schmitt F., Ryan M., and Cooper G. (2007). A brief review of the pharmacologic and therapeutic aspects of memantine in Alzheimer’s disease. Expert Opin. Drug Metab Toxicol. 3:135–141.PubMedCrossRefGoogle Scholar
  81. Shimizu-Sasamata M., Kawasaki-Yatsugi S., Okada M., Sakamoto S., Yatsugi S., Togami J., Hatanaka K., Ohmori J., Koshiya K., Usuda S., and Murase K. (1996). YM90K: pharmacological characterization as a selective and potent alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist. J. Pharmacol. Exp. Ther. 276:84–92.PubMedGoogle Scholar
  82. Shohami E., Novikov M., and Mechoulam R. (1993). A nonpsychotropic cannabinoid, HU-211, has cerebroprotective effects after closed head injury in the rat. J. Neurotrauma 10:109–119.PubMedGoogle Scholar
  83. Smith M., Wells J., and Borrie M. (2006). Treatment effect size of memantine therapy in Alzheimer disease and vascular dementia. Alzheimer Dis. Assoc. Disord. 20:133–137.PubMedCrossRefGoogle Scholar
  84. Sonkusare S. K., Kaul C. L., and Ramarao P. (2005). Dementia of Alzheimer’s disease and other neurodegenerative disorders–memantine, a new hope. Pharmacol. Res 51:1–17.PubMedGoogle Scholar
  85. Suzuki M., Sasamata M., and Miyata K. (2003). Neuroprotective effects of YM872 coadministered with t-PA in a rat embolic stroke model. Brain Res. 959:169–172.PubMedCrossRefGoogle Scholar
  86. Tanovic A. and Alfaro V. (2006). Neuroprotecciòn con memantina (antagonista no competitivo del receptor NMDA-glutamato) frente a la excitotoxicidad asociada al glutamato en la enfermedad de Alzheimer y en la demencia vascular [Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer’s disease and vascular dementia]. Rev. Neurol. 42:607–616.PubMedGoogle Scholar
  87. Tariot P. N., Farlow M. R., Grossberg G. T., Graham S. M., McDonald S., and Gergel I. (2004). Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. J. Am. Med. Assoc. 291:317–324.CrossRefGoogle Scholar
  88. Teramoto S., Matsuse T., and Ouchi T. (1999). Amantadine and pneumonia in elderly stroke patients. Lancet 353:2156–2157.PubMedCrossRefGoogle Scholar
  89. The STIPAS Investigators (1994). Safety study of tirilazad mesylate in patients with acute ischemic stroke (STIPAS). Stroke 25:418–423.Google Scholar
  90. Wang K. K., Larner S. F., Robinson G., and Hayes R. L. (2006a). Neuroprotection targets after traumatic brain injury. Curr. Opin. Neurol. 19:514–519.CrossRefGoogle Scholar
  91. Wang Y., Eu J., Washburn M., Gong T., Chen H. S., James W. L., Lipton S. A., Stamler J. S., Went G. T., and Porter S. (2006b). The pharmacology of aminoadamantane nitrates. Curr. Alzheimer Res. 3:201–204.CrossRefGoogle Scholar
  92. Weber C. (1998). [NMDA-receptor antagonist in pain therapy]. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 33:475–483.PubMedGoogle Scholar
  93. Wenk G. L. (2006). Neuropathologic changes in Alzheimer’s disease: potential targets for treatment. J. Clin. Psychiatry 67(Suppl 3):3–7.PubMedGoogle Scholar
  94. Wu J., Tang T., and Bezprozvanny I. (2006). Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington’s disease. Neurosci. Lett. 407:219–223.PubMedCrossRefGoogle Scholar
  95. Yamakura T. and Shimoji K. (1999). Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog. Neurobiol. 59:279–298.PubMedCrossRefGoogle Scholar
  96. Yen W., Williamson J., Bertram E. H., and Kapur J. (2004). A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res. 59:43–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations