Glutamate and Aspartate in Brain

  • Akhlaq A. Farooqui
  • Wei-Yi Ong
  • Lloyd A. Horrocks


Glial Cell Glutamine Synthetase Synaptic Cleft Glutamate Uptake Citric Acid Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff B. W., Cotman C. W., and Uhler M. D. (1999). Learning and memory. In: Siegel G. J., Agranoff B. W., Albers R. W., Fisher S. K., and Uhler M. D. (eds.), Basic Neurochemistry, Molecular, Cellular, and Medical Aspects. Lippincott-Raven Publishers, Philadelphia and New York, pp. 1027–1050.Google Scholar
  2. Attwell D. (2000). Brain uptake of glutamate: food for thought. J. Nutr. 130:1023S–1025S.PubMedGoogle Scholar
  3. Bacich D. J., Ramadan E., O‘Keefe D. S., Bukhari N., Wegorzewska I., Ojeifo O., Olszewski R., Wrenn C. C., Bzdega T., Wroblewska B., Heston W. D., and Neale J. H. (2002). Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J. Neurochem. 83:20–29.PubMedCrossRefGoogle Scholar
  4. Baslow M. H. (1999). Molecular water pumps and the aetiology of Canavan disease: a case of the sorcerer‘s apprentice. J. Inherit. Metab Dis. 22:99–101.PubMedCrossRefGoogle Scholar
  5. Baslow M. H. (2000). Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J. Neurochem. 75:453–459.PubMedCrossRefGoogle Scholar
  6. Baslow M. H. (2002). Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem. Int. 40:295–300.PubMedCrossRefGoogle Scholar
  7. Baslow M. H. (2003a). Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J. Mol. Neurosci. 21:185–190.CrossRefGoogle Scholar
  8. Baslow M. H. (2003b). N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem. Res. 28:941–953.CrossRefGoogle Scholar
  9. Baslow M. H., Suckow R. F., and Hungund B. L. (2000). Effects of ethanol and of alcohol dehydrogenase inhibitors on the reduction of N-acetylaspartate levels of brain in mice in vivo: a search for substances that may have therapeutic value in the treatment of Canavan disease. J. Inherit. Metab Dis. 23:684–692.PubMedCrossRefGoogle Scholar
  10. Baslow M. H., Suckow R. F., Berg M. J., Marks N., Saito M., and Bhakoo K. K. (2001). Differential expression of carnosine, homocarnosine and N-acetyl-L-histidine hydrolytic activities in cultured rat macroglial cells. J. Mol. Neurosci. 17:351–359.PubMedCrossRefGoogle Scholar
  11. Battistuta J., Bjartmar C., and Trapp B. D. (2001). Postmortem degradation of N-acetyl aspartate and N-acetyl aspartylglutamate: an HPLC analysis of different rat CNS regions. Neurochem. Res. 26:695–702.PubMedCrossRefGoogle Scholar
  12. Belli A., Sen J., Petzold A., Russo S., Kitchen N., Smith M., Tavazzi B., Vagnozzi R., Signoretti S., Amorini A. M., Bellia F., and Lazzarino G. (2006). Extracellular N-acetylaspartate depletion in traumatic brain injury. J. Neurochem. 96:861–869.PubMedCrossRefGoogle Scholar
  13. Berger U. V., Luthi-Carter R., Passani L. A., Elkabes S., Black I., Konradi C., and Coyle J. T. (1999). Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J. Comp. Neurol. 415:52–64.PubMedCrossRefGoogle Scholar
  14. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 628–634.CrossRefGoogle Scholar
  15. Daikhin Y. and Yudkoff M. (2000). Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130:1026S–1031S.PubMedGoogle Scholar
  16. Daisley J. N. and Rose S. P. (2002). Amino acid release from the intermediate medial hyperstriatum ventrale (IMHV) of day-old chicks following a one-trial passive avoidance task. Neurobiol. Learn. Mem. 77:185–201.PubMedCrossRefGoogle Scholar
  17. Daisley J. N., Gruss M., Rose S. P., and Braun K. (1998). Passive avoidance training and recall are associated with increased glutamate levels in the intermediate medial hyperstriatum ventrale of the day-old chick. Neural Plast. 6:53–61.PubMedCrossRefGoogle Scholar
  18. Danbolt N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105.PubMedCrossRefGoogle Scholar
  19. De A., Krueger J. M., and Simasko S. M. (2005). Glutamate induces the expression and release of tumor necrosis factor-α in cultured hypothalamic cells. Brain Res. 1053:54–61.PubMedCrossRefGoogle Scholar
  20. Dingledine R. and McBain C. J. (1999). Glutamate and aspartate. In: Siegel G. J., Agranoff B. W., Albers R. W., Fisher S. K., and Uhler M. D. (eds.), Basic Neurochemistry. Molecular, Cellular, and Medical Aspects. Lippincott-Raven Publishers, Philadelphia and New York, pp. 315–333.Google Scholar
  21. Dringen R. (2000). Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62:649–671.PubMedCrossRefGoogle Scholar
  22. Erecinska M., Zaleska M. M., Chiu L., and Nelson D. (1991). Transport of asparagine by rat brain synaptosomes: an approach to evaluate glutamine accumulation. J. Neurochem. 57:491–498.PubMedCrossRefGoogle Scholar
  23. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedCrossRefGoogle Scholar
  24. Farooqui A. A. and Horrocks L. A. (2007a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry. Lajtha, A. (ed.). Springer, New York, in press.Google Scholar
  25. Farooqui A. A. and Horrocks L. A. (2007b). Glycerophospholipids in the Brain: Phospholipases A 2 in Neurological Disorders, pp. 1–394. Springer, New York.Google Scholar
  26. Fisher G. H., D’Aniello A., Vetere A., Cusano G. P., Chavez M., and Petrucelli L. (1992). Quantification of D-aspartate in normal and Alzheimer brains. Neurosci. Lett. 143:215–218.PubMedCrossRefGoogle Scholar
  27. Fuhrman S., Palkovits M., Cassidy M., and Neale J. H. (1994). The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system. J. Neurochem. 62:275–281.PubMedCrossRefGoogle Scholar
  28. Fykse E. M. and Fonnum F. (1996). Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem. Res. 21:1053–1060.PubMedCrossRefGoogle Scholar
  29. Gafurov B., Urazaev A. K., Grossfeld R. M., and Lieberman E. M. (2001). N-acetylaspartyl-glutamate (NAAG) is the probable mediator of axon-to-glia signaling in the crayfish medial giant nerve fiber. Neuroscience 106:227–235.PubMedCrossRefGoogle Scholar
  30. Gamberino W. C., Berkich D. A., Lynch C. J., Xu B., and LaNoue K. F. (1997). Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J. Neurochem. 69:2312–2325.PubMedCrossRefGoogle Scholar
  31. Ghijsen W. E., Leenders A. G., and Lopes da Silva F. H. (2003). Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem. Res. 28:1443–1452.PubMedCrossRefGoogle Scholar
  32. Gibbs M. E. and Hertz L. (2005). Importance of glutamate-generating metabolic pathways for memory consolidation in chicks. J. Neurosci. Res. 81:293–300.PubMedCrossRefGoogle Scholar
  33. Gong X. Q., Frandsen A., Lu W. Y., Wan Y., Zabek R. L., Pickering D. S., and Bai D. (2005). D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons. Br. J. Pharmacol. 145:449–459.PubMedCrossRefGoogle Scholar
  34. Hertz L. (2006). Glutamate, a neurotransmitter-And so much more. A synopsis of Wierzba III. Neurochem. Int. 48:416–425.PubMedGoogle Scholar
  35. Hertz L. and Hertz E. (2003). Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem. Int. 43:355–361.PubMedCrossRefGoogle Scholar
  36. Hertz L. and Zielke H. R. (2004). Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27:735–743.PubMedCrossRefGoogle Scholar
  37. Hertz L., Dringen R., Schousboe A., and Robinson S. R. (1999). Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57:417–428.PubMedCrossRefGoogle Scholar
  38. Hoffman M. M. and Garber S. S. (2004). Volume-dependent glutamate permeation depends on transmembrane ionic strength and extracellular Cl-. J. Membr. Biol. 197:193–202.PubMedCrossRefGoogle Scholar
  39. Jalil M. A., Begum L., Contreras L., Pardo B., Iijima M., Li M. X., Ramos M., Marmol P., Horiuchi M., Shimotsu K., Nakagawa S., Okubo A., Sameshima M., Isashiki Y., Del Arco A., Kobayashi K., Satrustegui J., and Saheki T. (2005). Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J. Biol. Chem. 280:31333–31339.PubMedCrossRefGoogle Scholar
  40. Klunk W. E., Panchalingam K., Moossy J., McClure R. J., and Pettegrew J. W. (1992). N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42:1578–1585.PubMedGoogle Scholar
  41. Koenig M. L., Rothbard P. M., DeCoster M. A., and Meyerhoff J. L. (1994). N-acetyl-aspartyl-glutamate (NAAG) elicits rapid increase in intraneuronal Ca2+ in vitro. NeuroReport 5:1063–1068.PubMedCrossRefGoogle Scholar
  42. Le Coq J., An H. J., Lebrilla C., and Viola R. E. (2006). Characterization of human aspartoacylase: the brain enzyme responsible for Canavan disease. Biochemistry 45:5878–5884.PubMedCrossRefGoogle Scholar
  43. Lees G. J. (1991). Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Brain Res Rev. 16:283–300.PubMedCrossRefGoogle Scholar
  44. Li L. and Chin L. S. (2003). The molecular machinery of synaptic vesicle exocytosis. Cell Mol. Life Sci. 60:942–960.PubMedGoogle Scholar
  45. Luszczki J. J., Mohamed M., and Czuczwar S. J. (2006). 2-phosphonomethyl-pentanedioic acid (glutamate carboxypeptidase II inhibitor) increases threshold for electroconvulsions and enhances the antiseizure action of valproate against maximal electroshock-induced seizures in mice. Eur. J. Pharmacol. 531:66–73.PubMedCrossRefGoogle Scholar
  46. Márquez J., López de la Oliva A. R., Matés J. M., Segura J. A., and Alonso F. J. (2006). Glutaminase: A multifaceted protein not only involved in generating glutamate. Neurochem. Int. 48:465–471.PubMedGoogle Scholar
  47. Matsui K. and Jahr C. E. (2004). Differential control of synaptic and ectopic vesicular release of glutamate. J. Neurosci. 24:8932–8939.PubMedCrossRefGoogle Scholar
  48. McGeer P. L., Eccles J. C., and McGeer E. G. (1987). Putative excitatory neurons: Glutamate and aspartate. In: McGeer P. L., Eccles J. C., and McGeer E. G. (eds.), Molecular Neurobiology of the Mammalian Brain. Plenum Press, New York.Google Scholar
  49. McKenna M. C., Hopkins I. B., Lindauer S. L., and Bamford P. (2006). Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: Differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem. Int. 48:629–636.PubMedGoogle Scholar
  50. Narayana P. A. (2005). Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J. Neuroimaging 15:46S–57S.PubMedCrossRefGoogle Scholar
  51. Neale J. H., Bzdega T., and Wroblewska B. (2000). N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J. Neurochem. 75:443–452.PubMedCrossRefGoogle Scholar
  52. Nedergaard M., Takano T., and Hansen A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3:748–755.PubMedCrossRefGoogle Scholar
  53. Nicholls D. and Attwell D. (1990). The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–468.PubMedCrossRefGoogle Scholar
  54. Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J. J. (1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J. Neurosci. 13:1441–1453.PubMedGoogle Scholar
  55. Patel A. J., Lazdunski M., and Honore E. (2001). Lipid and mechano-gated 2P domain K+ channels. Current Opinion in Cell Biology 13:422–427.PubMedCrossRefGoogle Scholar
  56. Rao K. V. and Norenberg M. D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis. 16:67–78.PubMedCrossRefGoogle Scholar
  57. Rao T. S., Lariosa-Willingham K. D., and Yu N. (2003). Glutamate-dependent glutamine, aspartate and serine release from rat cortical glial cell cultures. Brain Res. 978:213–222.PubMedCrossRefGoogle Scholar
  58. Schousboe A., Westergaard N., Waagepetersen H. S., Larsson O. M., Bakken I. J., and Sonnewald U. (1997). Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21:99–105.PubMedCrossRefGoogle Scholar
  59. Sem‘yanov A. V. (2005). Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neurosci. Behav. Physiol 35:253–266.PubMedGoogle Scholar
  60. Shimizu T., Matsuoka Y., and Shirasawa T. (2005). Biological significance of isoaspartate and its repair system. Biol. Pharm. Bull. 28:1590–1596.PubMedCrossRefGoogle Scholar
  61. Sonnewald U., Westergaard N., and Schousboe A. (1997). Glutamate transport and metabolism in astrocytes. Glia 21:56–63.PubMedCrossRefGoogle Scholar
  62. Suárez I., Bodega G., and Fernández B. (2002). Glutamine synthetase in brain: effect of ammonia. Neurochem. Int. 41:123–142.PubMedCrossRefGoogle Scholar
  63. Tsacopoulos M. (2002). Metabolic signaling between neurons and glial cells: a short review. J. Physiol. (Paris) 96:283–288.CrossRefGoogle Scholar
  64. Yamamoto T., Nozaki-Taguchi N., and Sakashita Y. (2001). Spinal N-acetyl-alpha-linked acidic dipeptidase (NAALADase) inhibition attenuates mechanical allodynia induced by paw carrageenan injection in the rat. Brain Res. 909:138–144.PubMedCrossRefGoogle Scholar
  65. Zhong C., Zhao X., Van K. C., Bzdega T., Smyth A., Zhou J., Kozikowski A. P., Jiang J., O‘Connor W. T., Berman R. F., Neale J. H., and Lyeth B. G. (2006). NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J. Neurochem. 97:1015–1025.PubMedCrossRefGoogle Scholar
  66. Zollinger M., Brauchli-Theotokis J., Gutteck-Amsler U., Do K. Q., Streit P., and Cuenod M. (1994). Release of N-acetylaspartylglutamate from slices of rat cerebellum, striatum, and spinal cord, and the effect of climbing fiber deprivation. J. Neurochem. 63:1133–1142.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akhlaq A. Farooqui
    • 1
  • Wei-Yi Ong
    • 2
  • Lloyd A. Horrocks
    • 3
  1. 1.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Anatomy, Faculty of MedicineNational University of SingaporeSingapore
  3. 3.The Ohio State UniversityColumbus

Personalised recommendations