Advertisement

Oxidative DNA Damage and Telomere Shortening

  • Torsten Richter
  • Thomas von Zglinicki
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Telomeres are highly complex DNA-protein structures that protect the ends of chromosomes. A variety of DNA damage response and repair proteins are bound to telomeres and fulfil functions in the maintenance of the telomeric cap, in the protection of chromosomes from end-to-end fusion and, if telomeres become uncapped, in the induction and translation of a senescence signal. Telomeres shorten with cell division. This shortening is to a large extent caused by the accumulation of telomeric single-strand breaks. The telomeric DNA structure, with its high density of guanine repeats, results in an enhanced vulnerability towards DNA damage, especially oxidative damage. Moreover, repair of single-strand breaks in tolomeres is less efficient than in the bulk of the genome, and this is dependent on TRF2 expression. Thus, telomeres act as cellular sentinels: by shortening and arresting cell proliferation in response to accumulated oxidative stress they protect cells and tissues from the adverse consequences of genomic damage.

Keywords

Telomere Length Single Strand Break Human Diploid Fibroblast Holliday Junction Telomere Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cech TR. Life at the end of the chromosome: Telomeres and telomerase. Angew Chem Int Ed Engl 2000; 39:34–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43:405–413.PubMedCrossRefGoogle Scholar
  3. 3.
    Chong L, van Steensel B, Broccoli D et al. A human telomeric protein. Science 1995; 270:1663–1667.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanaoka S, Nagadoi A, Nishimura Y. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci 2005; 14:119–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Wright WE, Tesmer VM, Huffman KE et al. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 1997; 11:2801–2809.PubMedCrossRefGoogle Scholar
  6. 6.
    Parkinson GN, Lee MP, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002; 417:876–880.PubMedCrossRefGoogle Scholar
  7. 7.
    Riou JF, Guittat L, Mailliet P et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 2002; 99:2672–2677.PubMedCrossRefGoogle Scholar
  8. 8.
    Gomez D, Mergny JL, Riou JF. Detection of telomerase inhibitors based on g-quadruplex ligands by a modified telomeric repeat amplification protocol assay. Cancer Res 2002; 62:3365–3368.PubMedGoogle Scholar
  9. 9.
    Jackson SP, Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002; 23:687–696.PubMedCrossRefGoogle Scholar
  10. 10.
    Du X, Shen J, Kugan N et al. Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 2004; 24:8437–8446.PubMedCrossRefGoogle Scholar
  11. 11.
    Orren DK, Theodore S, Machwe A. The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 2002; 41:13483–13488.PubMedCrossRefGoogle Scholar
  12. 12.
    Khanna KK, Jackson SP. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat Genet 2001; 27:247–254.PubMedCrossRefGoogle Scholar
  13. 13.
    Khanna KK, Jackson SP. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat Genet 2001; 27:247–254.PubMedCrossRefGoogle Scholar
  14. 13.
    Pastwa E, Blasiak J. Nonhomologous DNA end joining. Acta Biochim Pol 2003; 50:891–908.PubMedGoogle Scholar
  15. 14.
    Nussenzweig A, Chen C, da Costa Soares V et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 1996; 382:551–555.PubMedCrossRefGoogle Scholar
  16. 15.
    ďAdda di Fagagna F, Hande MP, Tong WM et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 2001; 11:1192–1196.CrossRefGoogle Scholar
  17. 16.
    Smogorzewska A, Karlseder J, Holtgreve-Grez H et al. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002; 12:1635–1644.PubMedCrossRefGoogle Scholar
  18. 17.
    Espejel S, Martin M, Klatt P et al. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice. EMBO Rep 2004; 5:503–509.PubMedCrossRefGoogle Scholar
  19. 18.
    Teo SH, Jackson SP. Identification of Saccharomyces cerevisiae DNA ligase IV: Involvement in DNA double-strand break repair. EMBO J 1997; 16:4788–4795.PubMedCrossRefGoogle Scholar
  20. 19.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39–85.PubMedCrossRefGoogle Scholar
  21. 20.
    Gatei M, Young D, Cerosaletti KM et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 2000; 25:115–119.PubMedCrossRefGoogle Scholar
  22. 21.
    Purdy A, Su TT. Telomeres: Not all breaks are equal. Curr Biol 2004; 14:R613–614.PubMedCrossRefGoogle Scholar
  23. 22.
    Tsukamoto Y, Taggart AK, Zakian VA. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 2001; 11:1328–1335.PubMedCrossRefGoogle Scholar
  24. 23.
    Baird DM, Rowson J, Wynford-Thomas D et al. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 2003; 33:203–207.PubMedCrossRefGoogle Scholar
  25. 24.
    Olovnikov AM. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973; 41:181–190.PubMedCrossRefGoogle Scholar
  26. 25.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458–460.PubMedCrossRefGoogle Scholar
  27. 26.
    de Lange T. Protection of mammalian telomeres. Oncogene 2002; 21:532–540.PubMedCrossRefGoogle Scholar
  28. 27.
    Keys B, Serra V, Saretzki G et al. Telomere shortening in human fibroblasts is not dependent on the size of the telomeric-3′-overhang. Aging Cell 2004; 3:103–109.PubMedCrossRefGoogle Scholar
  29. 28.
    von Zglinicki T, Saretzki G, Docke W et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence? Exp Cell Res 1995; 220:186–193.CrossRefGoogle Scholar
  30. 29.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27:339–344.CrossRefGoogle Scholar
  31. 30.
    Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977; 267:423–425.PubMedCrossRefGoogle Scholar
  32. 31.
    Dumont P, Royer V, Pascal T et al. Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett 2001; 502:109–112.PubMedCrossRefGoogle Scholar
  33. 32.
    Chen Q, Ames BN, Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 1994; 91:4130–4134.PubMedCrossRefGoogle Scholar
  34. 33.
    Chen Q, Fischer A, Reagan JD et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92:4337–4341.PubMedCrossRefGoogle Scholar
  35. 34.
    Sitte N, Saretzki G, von Zglinicki T. Accelerated telomere shortening in fibroblasts after extended periods of confluency. Free Radic Biol Med 1998; 24:885–893.PubMedCrossRefGoogle Scholar
  36. 35.
    Yokoo S, Furumoto K, Hiyama E et al. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem 2004; 93:588–597.PubMedCrossRefGoogle Scholar
  37. 36.
    Saretzki G, Murphy MP, von Zglinicki T. MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2003; 2:141–143.PubMedCrossRefGoogle Scholar
  38. 37.
    Serra V, von Zglinicki T, Lorenz M et al. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003; 278:6824–6830.PubMedCrossRefGoogle Scholar
  39. 38.
    von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 2000; 908:99–110.CrossRefGoogle Scholar
  40. 39.
    Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: Relation to aging. Proc Natl Acad Sci USA 1995; 92:258–262.PubMedCrossRefGoogle Scholar
  41. 40.
    Ishibashi T, Lippard SJ. Telomere loss in cells treated with cisplatin. Proc Natl Acad Sci USA 1998; 95:4219–4223.PubMedCrossRefGoogle Scholar
  42. 41.
    Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 1998; 239:152–160.PubMedCrossRefGoogle Scholar
  43. 42.
    Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 1999; 453:365–368.PubMedCrossRefGoogle Scholar
  44. 43.
    Szalai VA, Singer MJ, Thorp HH. Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA. J Am Chem Soc 2002; 124:1625–1631.PubMedCrossRefGoogle Scholar
  45. 44.
    Opresko PL, Fan J, Danzy S et al. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 2005; 33:1230–1239.PubMedCrossRefGoogle Scholar
  46. 45.
    Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann NY Acad Sci 2004; 1019:278–284.PubMedCrossRefGoogle Scholar
  47. 46.
    Saretzki G, Sitte N, Merkel U et al. Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 1999; 18:5148–5158.PubMedCrossRefGoogle Scholar
  48. 47.
    Oei SL, Ziegler M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J Biol Chem 2000; 275:23234–23239.PubMedGoogle Scholar
  49. 48.
    Espejel S, Klatt P, Menissier-de Murcia J et al. Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol 2004; 167:627–638.PubMedCrossRefGoogle Scholar
  50. 49.
    Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73:177–208.PubMedCrossRefGoogle Scholar
  51. 50.
    Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295:2446–2449.PubMedCrossRefGoogle Scholar
  52. 51.
    Fotiadou P, Henegariu O, Sweasy JB. DNA polymerase beta interacts with TRF2 and induces telomere dysfunction in a murine mammary cell line. Cancer Res 2004; 64:3830–3837.PubMedCrossRefGoogle Scholar
  53. 52.
    Caldecott KW. Mammalian DNA single-strand break repair: An X-ra(y)ted affair. Bioessays 2001; 23(5):447–455.PubMedCrossRefGoogle Scholar
  54. 53.
    Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004; 119:355–368.PubMedCrossRefGoogle Scholar
  55. 54.
    Natarajan S, McEachern MJ. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 2002; 22:4512–4521.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Torsten Richter
    • 1
  • Thomas von Zglinicki
    • 1
  1. 1.School of Clinical Medical Science (Gerontology), Henry Wellcome Laboratory for Biogerontology Research, Newcastle General HospitalUniversity of NewcastleNewcastle-upon-TyneUK

Personalised recommendations