Skip to main content

Oxidative Damage and Promoter Function

  • Chapter
Oxidative Damage to Nucleic Acids

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Evidence is accumulating that base damage, particularly that produced by oxidation reactions, can modulate DNA protein interactions and affect promoter function. Such lesions have the capacity to interfere with normal gene regulation through direct interactions with promoter elements, or indirectly by establishing new transcription factor (TF) binding sites. The direct “cis” effects are the most studied and offer the best evidence for oxidative damage interference in promoter function in vitro and in vivo. These studies reveal diverse responses of TF to oxidative damage in promoters that can have either no effect, induce a full or partial inhibition or, in some cases, actually enhance binding depending on the particular TF-promoter system under investigation and the location of the damage within the promoter element. Other, more hypothetical pathways are presented including the de novo production of new consensus binding motifs by oxidative damage/mutations and changes in promoter structure or sequence such that they acquire higher affinity for inappropriate transcription factors. The possibility of molecular hijacking is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Donahue BA, Yin S, Taylor JS et al. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 1994; 91:8502–8506.

    Article  PubMed  CAS  Google Scholar 

  2. Rubin H. Is somatic mutation the major mechanism of malignant transformation? J Natl Cancer Inst 1980; 64:995–1000.

    PubMed  CAS  Google Scholar 

  3. Kennedy AR. Is there a critical target gene for the first step in carcinogenesis? Environ Health Perspect 1991; 93:199–203.

    Article  PubMed  CAS  Google Scholar 

  4. Holliday R. Mutations and epimutations in mammalian cells. Mutat Res 1991; 250:351–363.

    PubMed  CAS  Google Scholar 

  5. Kamiya K, Yasukawa-Barnes J, Mitchen JM et al. Evidence that carcinogenesis involves an imbalance between epigenetic high-frequency initiation and suppression of promotion. Proc Natl Acad Sci USA 1995; 92:1332–1336.

    Article  PubMed  CAS  Google Scholar 

  6. Selvanayagam CS, Davis CM, Cornforth MN et al. Latent expression of p53 mutations and radiation-induced mammary cancer. Cancer Res 1995; 55:3310–3317.

    PubMed  CAS  Google Scholar 

  7. Mondal S, Heidelberger C. In vitro malignant transformation by methylcholanthrene of the progeny of single cells derived from C3H mouse prostate. Proc Natl Acad Sci USA 1970; 65:219–225.

    Article  Google Scholar 

  8. Barrett JC, Ts’o PO. Relationship between somatic mutation and neoplastic transformation. Proc Natl Acad Sci USA 1978; 75:3297–3301.

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy AR, Fox M, Murphy G et al. Relationship between X-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci USA 1980; 77:7262–7266.

    Article  PubMed  CAS  Google Scholar 

  10. MacLeod MC. A possible role in chemical carcinogenesis for epigenetic, heritable changes in gene expression. Mol Carcinog 1996; 15:241–250.

    Article  PubMed  CAS  Google Scholar 

  11. Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995; 267:1788–1792.

    Article  PubMed  CAS  Google Scholar 

  12. Gehring WJ. The biology of imaginal discs. New York: Spring-Verlag, 1972.

    Google Scholar 

  13. Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 1994; 8:1514–1525.

    Article  PubMed  CAS  Google Scholar 

  14. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Mol Cell Biol 1995; 15:4215–4224.

    PubMed  CAS  Google Scholar 

  15. Treiber DK, Zhai X, Jantzen HM et al. Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc Natl Acad Sci USA 1994; 91:5672–5676.

    Article  PubMed  CAS  Google Scholar 

  16. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 1999; 453:365–368.

    Article  PubMed  CAS  Google Scholar 

  17. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays 2004; 26:533–542.

    Article  PubMed  CAS  Google Scholar 

  18. Tornaletti S, Pfeifer GP. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 1994; 263:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  19. Pfeifer GP, Drouin R, Riggs AD et al. Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol Cell Biol 1992; 12:1798–1804.

    PubMed  CAS  Google Scholar 

  20. Tornaletti S, Pfeifer GP. UV light as a footprinting agent: Modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J Mol Biol 1995; 249:714–728.

    Article  PubMed  CAS  Google Scholar 

  21. Ghosh R, Paniker L, Mitchell DL. Bound transcription factor suppresses photoproduct formation in the NF-kappa B promoter. Photochem Photobiol 2001; 73:1–5.

    Article  PubMed  CAS  Google Scholar 

  22. Ramon O, Sauvaigo S, Gasparutto D et al. Effects of 8-oxo-7,8-dihydro-2′-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic Res 1999; 31:217–229.

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh R, Mitchell DL. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 1999; 27:3213–3218.

    Article  PubMed  CAS  Google Scholar 

  24. Marietta C, Gulam H, Brooks PJ. A single 8,5′-cyclo-2′-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo. DNA Repair (Amst) 2002; 1:967–975.

    Article  CAS  Google Scholar 

  25. Rogstad DK, Liu P, Burdzy A et al. Endogenous DNA lesions can inhibit the binding of the AP-1 (c-Jun) transcription factor. Biochemistry 2002; 41:8093–8102.

    Article  PubMed  CAS  Google Scholar 

  26. Parsian AJ, Funk MC, Tao TY et al. The effect of DNA damage on the formation of protein/ DNA complexes. Mutat Res 2002; 501:105–113.

    PubMed  CAS  Google Scholar 

  27. Hailer-Morrison MK, Kotler JM, Martin BD et al. Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2′-deoxyguanosine lesions in the NF-kappaB promoter element. Biochemistry 2003; 42:9761–9770.

    Article  PubMed  CAS  Google Scholar 

  28. Gazzoli I, Kolodner RD. Regulation of the human MSH6 gene by the Sp1 transcription factor and alteration of promoter activity and expression by polymorphisms. Mol Cell Biol 2003; 23:7992–8007.

    Article  PubMed  CAS  Google Scholar 

  29. Sakai T, Ohtani N, McGee TL et al. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991; 353:83–86.

    Article  PubMed  CAS  Google Scholar 

  30. Ramon O, Wong HK, Joyeux M et al. 2′-deoxyguanosine oxidation is associated with decrease in the DNA-binding activity of the transcription factor Sp1 in liver and kidney from diabetic and insulin-resistant rats. Free Radic Biol Med 2001; 30:107–118.

    Article  PubMed  CAS  Google Scholar 

  31. Lu T, Pan Y, Kao SY et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429:883–891.

    Article  PubMed  CAS  Google Scholar 

  32. MacLeod MC, Powell KL, Tran N. Binding of the transcription factor, Sp1, to nontarget sites in DNA modified by benzo[a]pyrene diol epoxide. Carcinogenesis 1995; 16:975–983.

    Article  PubMed  CAS  Google Scholar 

  33. Pil PM, Lippard SJ. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 1992; 256:234–237.

    Article  PubMed  CAS  Google Scholar 

  34. Zhai X, Beckmann H, Jantzen HM et al. Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry 1998; 37:16307–16315.

    Article  PubMed  CAS  Google Scholar 

  35. Vichi P, Coin F, Renaud JP et al. Cisplatin-and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J 1997; 16:7444–7456.

    Article  PubMed  CAS  Google Scholar 

  36. Hegde V, Wang M, Deutsch WA. Characterization of human ribosomal protein S3 binding to 7,8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance. DNA Repair (Amst) 2004; 3:121–126.

    Article  CAS  Google Scholar 

  37. Johnson DG, Coleman A, Powell KL et al. High-affinity binding of the cell cycle-regulated transcription factors E2F1 and E2F4 to benzo[a]pyrene diol epoxide-DNA adducts. Mol Carcinog 20:216–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mitchell, D., Ghosh, R. (2007). Oxidative Damage and Promoter Function. In: Evans, M.D., Cooke, M.S. (eds) Oxidative Damage to Nucleic Acids. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72974-9_7

Download citation

Publish with us

Policies and ethics