Nucleic Acid Oxidation and the Pathogenesis of Cardiovascular Diseases

  • Maria Grazia Andreassi
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Cardiovascular disease is the dominant health problem in the western world. The most frequent underlying cause of cardiovascular disease is atherosclerosis. The cellular and molecular mechanisms involved in atherosclerosis and its acute complications are being defined, but much is still unknown. Growing evidence indicates that oxidative damage to nuclear and mitochondrial DNA may represent an important link between the inflammatory nature and the oxidative theory of atherosclerosis. Various animal models of atherosclerosis support the evidence that oxidatively damaged DNA plays a key role in both the formation and the complications of atherosclerosis. Human investigations also support a mutational hypothesis of atherosclerosis. Future research on the mechanism by which oxidatively damaged DNA participates in the atherogenic process may provide new insights for early diagnosis and treatment of atherosclerosis.


Atherosclerotic Plaque Atherosclerotic Lesion Microsatellite Instability Human Atherosclerotic Plaque Atherogenic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heart Disease and Stroke Statistics-Update. Dallas, TX: American Heart Association, 2004.Google Scholar
  2. 2.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362:801–809.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340:115–126.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennet MR. Reactive oxygen species and death: Oxidative DNA damage in atherosclerosis. Circ Res 2001; 886:48–50.Google Scholar
  5. 5.
    Ross JS, Stagliano NE, Donovan MJ et al. Atherosclerosis and cancer: Common molecular pathways of disease development and progression. Ann NY Acad Sci 2001; 947:271–292.PubMedCrossRefGoogle Scholar
  6. 6.
    Olinski R, Gackowski D, Foksinski M et al. Oxidative DNA damage: Assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic Biol Med 2002; 33:192–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Andreassi MG. Coronary atherosclerosis and somatic mutations: An overview of the contributive factors for oxidative DNA damage. Mutat Res 2003; 543:67–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Andreassi MG, Botto N. DNA damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med 2003; 13:270–275.PubMedCrossRefGoogle Scholar
  9. 9.
    Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: Induction, repair and significance. Mutat Res 2004; 567:1–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis: The disconnect between cellular studies and clinical outcomes. J Thromb Haemost 2005; 3:254–267.PubMedCrossRefGoogle Scholar
  11. 11.
    Stary HC. Changes in the cells of atherosclerotic lesions as advanced lesions evolve in coronary arteries of children and young adults. In: Glagov S, Newman WP, Scaffer SA, eds. Pathobiology of the Human Atherosclerotic Plaque. New York: Springer, 1990:93–106.Google Scholar
  12. 12.
    Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91:2844–2850.PubMedGoogle Scholar
  13. 13.
    Fuster V, Badimon J, Chesebro JH et al. Plaque rupture, thrombosis, and therapeutic implications. Haemostasis 1996; 26: 269–284.PubMedGoogle Scholar
  14. 14.
    Libby P. Inflammation in atherosclerosis. Nature 2002; 420:868–874.PubMedCrossRefGoogle Scholar
  15. 15.
    Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 1973; 70: 1753–1756.PubMedCrossRefGoogle Scholar
  16. 16.
    Pearson TA, Wang BA, Solez K et al. Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am J Pathol 1975; 81: 379–387.PubMedGoogle Scholar
  17. 17.
    Murry CE, Gipaya CT, Bartosek T et al. Monoclonality of smooth-muscle cells in human atherosclerosis. Am J Pathol 1997; 151:697–706.PubMedGoogle Scholar
  18. 18.
    Chung LM, Schwartz SM, Murry CE. Clonal architecture of normal and atherosclerotic aorta. Am J Pathol 1998; 152: 913–923.PubMedGoogle Scholar
  19. 19.
    Schwartz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerotic lesions. Annu Rev Med 1998; 49:437–460.PubMedCrossRefGoogle Scholar
  20. 20.
    Luis AJ. Atherosclerosis. Nature 2000; 407:233–241.CrossRefGoogle Scholar
  21. 21.
    Irani K. Oxidant signaling in vascular cell growth, death, and survival: A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signalling. Cir Res 2000; 87:179–183.Google Scholar
  22. 22.
    Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc Med 2001; 11:93–102.PubMedCrossRefGoogle Scholar
  23. 23.
    Grundy SM. Role of low-density lipoproteins in atherogenesis and development of coronary heart disease. Clin Chem 1995; 41:139–146.PubMedGoogle Scholar
  24. 24.
    Parthasarathy S, Santanam N, Ramachandran S et al. Oxidants and antioxidants in atherogenesis. An appraisal J Lipid Res 1999; 40:2143–2157.PubMedGoogle Scholar
  25. 25.
    Madamanchi NR Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25:29–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Hunt CR, Sim JE, Sullivan SJ et al. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res 1998; 58:3986–3992.PubMedGoogle Scholar
  27. 27.
    Jackson AL, Chen R, Loeb LA. Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci USA 1998; 95:12468–12473.PubMedCrossRefGoogle Scholar
  28. 28.
    Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis 2000; 21:361–370.PubMedCrossRefGoogle Scholar
  29. 29.
    Cooke MS, Evans MD, Dizdaroglu M et al. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 2003; 17:1195–1214.PubMedCrossRefGoogle Scholar
  30. 30.
    Hatzistamou J, Kiaris H, Ergazaki M et al. Loss of heterozygosity and microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 1996; 225:186–190.PubMedCrossRefGoogle Scholar
  31. 31.
    Spandidos DA, Ergazaki M, Arvanitis D et al. Microsatellite instability in human atherosclerotic plaques. Biochem Biophys Res Commun 1996; 220:137–140.PubMedCrossRefGoogle Scholar
  32. 32.
    McCaffrey TA, Du B, Consigli S et al. Genomic instability in the type II TGFbetal receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 1997; 100:2182–2188.PubMedCrossRefGoogle Scholar
  33. 33.
    Flouris GA, Arvanitis DA, Parissis JT et al. Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. Mol Cell Biol Res Commun 2000; 4:62–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Grati FR, Ghilardi G, Sirchia SM et al. Loss of heterozygosity of the NOS3 dinucleotide repeat marker in atherosclerotic plaques of human carotid arteries. Atherosclerosis 2001; 159:261–267.PubMedCrossRefGoogle Scholar
  35. 35.
    Miniati P, Sourvinos G, Michalodimitrakis M et al. Loss of heterozygosity on chromosomes 1, 2, 8, 9 and 17 in cerebral atherosclerotic plaques. Int J Biol Markers 2001; 16:167–171.PubMedGoogle Scholar
  36. 36.
    Clark KJ, Cary NR, Grace AA et al. Microsatellite mutation of type II transforming growth factor-beta receptor is rare in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001; 21:555–559.PubMedGoogle Scholar
  37. 37.
    Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med 2005; 9:153–159.PubMedCrossRefGoogle Scholar
  38. 38.
    Markowitz SD. Atherosclerosis, just another cancer? J Clin Invest 1997; 100:2143–2145.PubMedCrossRefGoogle Scholar
  39. 39.
    Casalone R, Granata P, Minelli E et al. Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Hum Genet 1991; 87:139–143.PubMedCrossRefGoogle Scholar
  40. 40.
    Vanni R, Cossu L, Licheri S. Atherosclerotic plaque as a benign tumor? Cancer Genet Cytogenet 1990; 47:273–274.PubMedCrossRefGoogle Scholar
  41. 41.
    Matturri L, Cazzullo A, Turconi P et al. Chromosomal alterations in atherosclerotic plaques. Atherosclerosis 2001; 154:755–761.PubMedCrossRefGoogle Scholar
  42. 42.
    Lavezzi AM, Ottaviani G, Matturri L. Biology of the smooth muscle cells in human atherosclerosis. APMIS 2005; 113:112–121.PubMedCrossRefGoogle Scholar
  43. 43.
    Izzotti A, D’Agostini F, Bagnasco M et al. Chemoprevention of carcinogen-DNA adducts and chronic degenerative diseases. Cancer Res 1994; 54:1994s–1998s.PubMedGoogle Scholar
  44. 44.
    De Flora S, Izzotti A, Walsh D et al. Molecular epidemiology of atherosclerosis. FASEB J 1997; 11:1021–1031.PubMedGoogle Scholar
  45. 45.
    Van Schooten FJ, Hirvonen A, Maas LM et al. Putative susceptibility markers of coronary artery disease: Association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB J 1998; 12:1409–1417.PubMedGoogle Scholar
  46. 46.
    Martinet W, Knaapen MW, De Meyer GR et al. Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ Res 2001; 88:733–739.PubMedCrossRefGoogle Scholar
  47. 47.
    Martinet W, Knaapen MW, De Meyer GR et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002; 106:927–932.PubMedCrossRefGoogle Scholar
  48. 48.
    Collins AR, Gedik CM, Olmedilla B et al. Oxidative DNA damage measured in human lymphocytes: Large differences between sexes and between countries, and correlations with heart disease mortality rates. FASEB J 1998; 12:1397–1400.PubMedGoogle Scholar
  49. 49.
    Gackowski D, Kruszewski M, Jawien A et al. Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radic Biol Med 2001; 31:542–547.PubMedCrossRefGoogle Scholar
  50. 50.
    Botto N, Masetti S, Petrozzi L et al. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coron Artery Dis 2002; 13:269–274.PubMedCrossRefGoogle Scholar
  51. 51.
    Demirbag R, Yilmaz R, Gur M et al. Lymphocyte DNA damage in patients with acute coronary syndrome and its relationship with severity of acute coronary syndrome. Mutat Res 2005; 578:298–307.PubMedGoogle Scholar
  52. 52.
    Martinet W, de Meyer GR, Herman AG et al. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest 2004; 34:323–327.PubMedCrossRefGoogle Scholar
  53. 53.
    Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 91:8731–8738.PubMedCrossRefGoogle Scholar
  54. 54.
    Wallace DC, Graham BH. Mitochondrial genes in myopathy: Cardiomyopathy and stoke. In: Kenneth R, Chien MD, eds. Molecular Basis of Cardiovascular Disease. Phyladelphia: WB Saunders Company, 1999:264–277.Google Scholar
  55. 55.
    Ramachandran A, Levonen AL et al. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med 2002; 33:1465–1474.PubMedCrossRefGoogle Scholar
  56. 56.
    Puddu P, Puddu GM, Galletti L et al. Mitochondrial dysfunction as an initiating event in atherogenesis: A plausible hypothesis. Cardiology 2005; 103:137–141.PubMedCrossRefGoogle Scholar
  57. 57.
    Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997; 94:514–519.PubMedCrossRefGoogle Scholar
  58. 58.
    Wallace DC. Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 1992; 256:628–632.PubMedCrossRefGoogle Scholar
  59. 59.
    Kang D, Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: Aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 2005; 12:429–441.PubMedGoogle Scholar
  60. 60.
    Ide T, Tsutsui H, Kinugawa S et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999; 85:357–363.PubMedGoogle Scholar
  61. 61.
    Ferrari R. The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 1996; 28:S1–S10.PubMedGoogle Scholar
  62. 62.
    Ballinger SW, Patterson C, Yan CN et al. Hydrogen peroxide-and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000; 86:960–966.PubMedGoogle Scholar
  63. 62.
    Ballinger SW, Patterson C, Knight-Lozano CA et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002; 106:544–549.PubMedCrossRefGoogle Scholar
  64. 64.
    Ide T, Tsutsui H, Hayashidani S et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 2001; 88:529–535.PubMedGoogle Scholar
  65. 65.
    Tsutsui H, Ide T, Shiomi T et al. 8-oxo-dGTPase, which prevents oxidative stress-induced DNA damage, increases in the mitochondria from failing hearts. Circulation 2001; 104:2883–2885.PubMedCrossRefGoogle Scholar
  66. 66.
    Knight-Lozano CA, Young CG, Burow DL et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 2002; 105:849–854.PubMedCrossRefGoogle Scholar
  67. 67.
    Anderson S, Bankier AT, Barrell BG et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290:457–465.PubMedCrossRefGoogle Scholar
  68. 68.
    Schon EA, Rizzuto R, Moraes CT et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989; 244:346–349.PubMedCrossRefGoogle Scholar
  69. 69.
    Corral-Debrinski, Shoffner JM, Lott MT et al. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 1992; 275:169–180.PubMedGoogle Scholar
  70. 70.
    Botto N, Berti S, Manfredi S et al. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res 2005; 570:81–88.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  • Maria Grazia Andreassi
    • 1
  1. 1.CNR Institute of Clinical PhysiologyG. Pasquinucci HospitalMassaItaly

Personalised recommendations