Skip to main content

High-Resolution and Low-Voltage SEM of Plant Cells

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes SH (1992) Ultrastructural imaging of freeze-fractured plant cells in the scanning electron microscope. Microsc Res Tech 22:160–169

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI (2006) Imaging the primary cell wall. In: Hiyashi T (ed) The Science and Lore of the Plant Cell Wall. BrownWalker, Boca Raton, pp. 11–22

    Google Scholar 

  • Brown R (1833) On the Organs and Mode of Fecundation in Orchidaceae and Asclepiaceae. Transactions of the Linnean Society of London 16:685–745

    Google Scholar 

  • Cavalier-Smith T (1974) Basal body and flagellar development during vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardtii. J Cell Sci 16:529–556

    PubMed  CAS  Google Scholar 

  • Cox G et al (1997) Of plants that swim—three-dimensional architecture of the flagellar root apparatus as revealed by confocal microscopy. Cell Vision 4:245–246

    Google Scholar 

  • Dibbayawan TP, Cox G (1998) Flagellar root apparatus of Chlamydomonas: an immunocytochemical study using confocal microscopy and FESEM. In: Calderón Benavides HA, Jóse Yacamán M (eds) Electron Microscopy 1988: Proceedings of the 14th International Congress on Electron Microscopy, Cancun, Mexico, Vol IV. Institute of Physics Publishing, Bristol and Philadelphia, 729–730

    Google Scholar 

  • Fowke L et al (1999) Combined immunofluorescence and FESEM study of plasma membrane-associated organelles in highly vacuolated suspensor cells of white spruce somatic embryos. Cell Biol Internat (in press)

    Google Scholar 

  • Hooke R (1665) Micrographia. Royal Society, London

    Google Scholar 

  • Koga H et al (1992) Application of an osmium-maceration technique to observe plant-microbe interfaces of Italian ryegrass and crown rust fungi by scanning electron microscopy. Can J Bot 70:438–442

    Article  Google Scholar 

  • Lea PJ et al (1992) Chemical extraction of the cytosol using osmium tetroxide for high-resolution scanning electron microscopy. Microsc Res Tech 22:185–193

    Article  PubMed  CAS  Google Scholar 

  • McLean B, Juniper BE (1993) The arrangement of actin bundles and chloroplasts in the nodal regions of Characean internodal cells. Eur J Phycol 28:33–37

    Article  Google Scholar 

  • Marchant HJ (1978) Microtubules associated with the plasma membrane isolated from the green alga Mougeotia. Experimental Cell Research 115:25–30

    Article  PubMed  CAS  Google Scholar 

  • Marchant HJ (1979) Microtubules, cell wall deposition and the determination of plant cell shape. Nature 278:167–168

    Article  Google Scholar 

  • Marchant HJ, Fowke LC (1977) Preparation, culture and regeneration of protoplasts from filamentous green algae. Canadian Journal of Botany 55:3080–3086

    Article  Google Scholar 

  • Marchant HJ, Hines ER (1979) The role of microtubules and cell wall deposition in the elongation of regenerating protoplasts of Mougeotia. Experimental Cell Research 115:25–30

    Article  Google Scholar 

  • Marga F et al (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: Evidence from scanning electron microscopy and atomic force microscopy. Plant Journal 43:181–190

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Staehelin LA (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta 218:501–515

    Article  PubMed  CAS  Google Scholar 

  • Reichelt S et al (1995) Visualization of immunogold-labelled cytoskeletal proteins by scanning electron microscopy. Eur J Cell Biol 67:89–93

    PubMed  CAS  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543–571

    Article  PubMed  CAS  Google Scholar 

  • Staehelin A et al. (1990) Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings visualised by high pressure frozen and freeze-substituted samples. Protoplasma 157:75–91

    Article  PubMed  CAS  Google Scholar 

  • Schleiden M (1838) Beiträge zur Phytogenesis. Müllers Archiv, pp 137–176

    Google Scholar 

  • Schwann T (1839) Mikroskopische untersuchungen über die ubereinstimmung in der struktur und dem wachstume der tiere und pflanzen. Re-edited by F. Hünseler in 1910. Engelmann, Leipzig

    Google Scholar 

  • Tanaka K, Fukudome H (1991) Three-dimensional organization of the Golgi complex observed by scanning electron microscopy. J Electron Microsc Tech 17:15–23

    Article  PubMed  CAS  Google Scholar 

  • Tian GW et al (2004) The higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall. Cell Motility and the Cytoskeleton 57:26–36

    Article  PubMed  CAS  Google Scholar 

  • Vesk M et al (2000) Field emission scanning electron microscopy of plant cells. Protoplasma 210:138–155

    Article  Google Scholar 

  • Vesk PA et al (1994) Imaging of plant microtubules with high-resolution scanning electron microscopy. Protoplasma 182:71–74

    Article  Google Scholar 

  • Vesk PA et al (1996) Field emission scanning electron microscopy of microtubule arrays in higher plant cells. Protoplasma 195:168–182

    Article  Google Scholar 

  • Wiedemeier AMD et al (2002) Mutant alleles of arabidopsis RADIALLY SWOLLEN 4 and RSW7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils. Development 129:4821–4830

    PubMed  CAS  Google Scholar 

  • Whiffen, LK et al (2002) High-resolution microscopy of regenerating Mougeotia (Chlorophyceae) protoplasts. European Journal of Phycology 37:339–347

    Article  Google Scholar 

  • Williamson RE (1993) Organelle movements. Ann Rev Plant Physiol 44:181–202

    Article  Google Scholar 

  • Wright RL et al (1985) A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation. J Cell Biol 101:1903–1912

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cox, G., Vesk, P., Dibbayawan, T., Baskin, T.I., Vesk, M. (2008). High-Resolution and Low-Voltage SEM of Plant Cells. In: Schatten, H., Pawley, J.B. (eds) Biological Low-Voltage Scanning Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72972-5_9

Download citation

Publish with us

Policies and ethics