Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi K, Houjou K, Katoh M, Kanaya K (1976) High-resolution shadowing for electron microscopy by sputter deposition, Ultramicrosc. 2:17–29

    Google Scholar 

  • Adams WW, Price G, Krause SJ (1990) Imaging of polymer single crystals in low voltage, high-resolution scanning electron microscopy, .Proc. XIIth ICEM Mtg. 1106–1107

    Google Scholar 

  • Aebi U, Jarnik M, Reichelt R, Engel A (1990) Structural analysis of the nuclear pore complex by conventional and scanning transmission electron microscopy, (CTEM/STEM), EMSA Bull. 20 2:69–76

    Google Scholar 

  • Albrecht RM and Hodges GM (1988) Biotechnology and Bioapplications of Colloidal-Gold, SMI International: Chicago, IL

    Google Scholar 

  • Albrecht RM, Simmons SR, Prudent JR, Erickson CM (1988) High-resolution SEM of colloidal-gold labels, Proc. EMSA, 46:214–215

    Google Scholar 

  • Albrecht RM, Goodman SL, Simmons SR (1989) Distribution and movement of membrane associated platelet glycoproteins: use of colloidal-gold with correlative video enhanced light microscopy, low-voltage high-resolution scanning electron microscopy and high voltage transmission electron microscopy, Am.J. Anat. 185:149–164

    Article  Google Scholar 

  • Anger K, Lischke B, Sturm M (1983) Material surfaces for electron-optical equipment, Scanning 5:39–44

    Google Scholar 

  • Apkarian RP, Wright ER, Seredyuk VA, Eustis S, Lyon LA, Conticello VP,Menger FM (2003) In-lens cryo-high-resolution scanning electronmi croscopy: methodologies for molecular imaging of self-assembled organic hydrogels. Microsc. Microanal. 9-4:286–295.

    Article  CAS  Google Scholar 

  • Armstrong DA, Luo S, Joy DC (1990) Re-examining mechanisms of radiation damage in organic specimens, Proc. ICEM Mtg. 12:812–813

    Google Scholar 

  • Arnold WH, Singh B, Phan K (1989) Linewidth metrology requirements for submicron lithography, Solid State Tech. 32-4:139–145

    Google Scholar 

  • Arro E, Collins VP, Brunk UT (1981) High-resolution SEM of cultured cells: Preparatory procedures, Scanning Electron Microsc. II, 159–168

    Google Scholar 

  • Atwood D and Barton R (1989) Proc. of the Workshop on X-ray Microimaging for the Life Sciences, Berkeley, CA, Lawrence Berkeley Lab, University of California-Berkeley, Lawrence Berkeley Laboratory, Berkeley, California, LBL Report No. 27660

    Google Scholar 

  • Autrata R, Schauert P, Kvapil JS, Kvapil J (1978)A single crystal of YAG - new fast scintillator in SEM, J. Phys.E: Sci.Instrum. II, 707–708

    Google Scholar 

  • Autrata R, Schauer P, Kvapil JS, Kvapil J (1983) Single-crystal aluminates—new generation of scintillators for scanning electron microscopes and transparent screens for electron optical devices, Scanning Electron Microsc. II, 489–500

    Google Scholar 

  • Autrata R (1989) Backscattered electron imaging using single crystal scintillator detectors, Scanning Microsc. 3:739–763

    CAS  Google Scholar 

  • Autrata R (1990) New configurations of single-crystal scintillator detectors in SEM, Proc. XIIth ICEM Mtg, 376–377

    Google Scholar 

  • Bachmann L, Becker R, Leupold G, Barth M, Guckenberger R, Baumeister W (1985) Decoration and shadowing of freeze-eched catalase crystals, Ultramicrosc. 16:305–320

    Article  CAS  Google Scholar 

  • Ball MD and McCartney DG (1981) The measurement of atomic number and composition in a SEM using backscattered detectors, J. Microsc. 124:57–68

    CAS  Google Scholar 

  • Ballard DB (1972) Comparison and evaluation of specimens for resolution standards, Scanning Electron Microsc. 1972, 121–128

    Google Scholar 

  • Barth JE, Jansen GH, Kruit P (1990) Low voltage diffraction limited probe current: Limits due to e-e interactions in intermediate cross-over, Proc. XIIth ICEM Mtg. 394–395

    Google Scholar 

  • Bauer B, Speidel R (1981) Influence of energy on spread of field-emitted electrons on resolution in the scanning transmission electron microscope (STEM), Ultramicrosc. 6:281–286

    CAS  Google Scholar 

  • Becker RP and Sogard M,(1979) Visualization of subsurface structures in cells and tissues by backscattered electron imaging, Scanning Electron Microsc. 1979, II, 835–870

    Google Scholar 

  • Bell PB, Lindroth M, Fredriksson BA (1989) Preparationof cytoskeletons for high-resolution scanning and scanning transmission electron microscopy, Scanning Microsc. Supplement 3, 117–135

    Google Scholar 

  • Bendayan M (1984) Protein-A gold electron microscopic immunocytochemistry: methods, applications and limitations, J. Elec.Microsc.Tech. 1:243–270

    Article  CAS  Google Scholar 

  • Bendayan M (1987) Introduction of the protein-G gold complex for high-resolution immunocytochemistry, J. Elec.Microsc.Tech. 6:7–13

    Article  CAS  Google Scholar 

  • Bennett MH and Guller GE (1986) In process inspection and metrology of semiconductor wafers with the use of an automated low voltage SEM, Microbeam Anal. 21:649–652

    Google Scholar 

  • Black DR and Ballard DB (1982) Sputter coated carbon specimens for SEM performance testing, Proc.EMSA 40:750–751

    Google Scholar 

  • Boersch H (1954) Experimentele bestimmung der energieverteilung in thermisch ausgloesten elektronen strahlen, Z.Phys. 139:139

    Google Scholar 

  • Booy FP and Pawley JB (1993) Cryo-crinkling: what happens to carbon films on copper grids at low temperature, Ultramicroscopy, 43:273–280

    Article  Google Scholar 

  • Boyde A (1971) A review of problems of interpretation of the SEM image with special regard to methods of specimen preparation, Scanning Electron Microsc. 1971, 1–8

    Google Scholar 

  • Boyde A, Jones SJ, Pawley JB (1974) Some practical applications of real-time TV speed stereo SEM in hard tissue research, Scanning Electron Microsc. III:109–115

    Google Scholar 

  • Boyde A, Maconnachie E (1979) Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy, Scanning 2:149–163

    CAS  Google Scholar 

  • Boyde A, Maconnachie E (1981) Morphological correlations with dimensional change during SEM specimen preparation, Scanning Electron Microsc. IV:27–34

    Google Scholar 

  • Alan Boyde, (2003), The real response of bone to exercise, J. Anat. 203:173

    Article  Google Scholar 

  • Boyes ED (1984a) High-resolution, low voltage scanning electron microscopy (LVSEM). Inst.Phys.Conf.Ser. 68:485–488

    CAS  Google Scholar 

  • Boyes ED (1984b) High-resolution at low voltage: The SEM philosopher’s stone? Proc.EMSA 42:446–450

    Google Scholar 

  • Brandis EK, DeStafeno J, Flitch R, Landengerger R (1984) Low voltage SEM, auger, and XPS of surface contaminants, Proc. EMSA 42:458–459

    Google Scholar 

  • Braten T (1978) High-resolution scanning electron microscopy in biology: artifacts caused by the nature and mode of application of the coating material, J. Microsc. 113:53–59

    PubMed  CAS  Google Scholar 

  • Breese JF (1982) Quantitative investigations in semiconductor devices by electron beam induced current mode: A review, Scanning Electron Microsc. IV, 1487–1500

    Google Scholar 

  • Broers AN (1974) Recent advances in SEM with lanthanum hexaboride cathodes, Scanning Electron Microsc. 10–18

    Google Scholar 

  • Broers AN, Panessa BJ, Gennaro JF (1975) High-resolution scanning electron microscopy of bacteriophage 3D and T4, Science 189:637–639

    Article  PubMed  CAS  Google Scholar 

  • Broers AN (1982) Resolution in surface scanning electron microscopy of bulk materials, Ultramicrosc. 8:137–144

    Article  CAS  Google Scholar 

  • Brunner M, Schmid R (1986) Charging effects in low voltage scanning electron microscope metrology, Scanning Electron Microsc. II, 377–382

    Google Scholar 

  • Brunner M, Schmid R (1987) Characteristics of an electric/magnetic quadrupole detector for low voltage scanning electron microscopy, Scanning Microsc. IV:1501–1506

    Google Scholar 

  • Buchanan R (1982) New SEM lens gives sharpest micrographs yet, Industrial Res. Dev. Aug., 92–95

    Google Scholar 

  • Buchanan R, Menzel E (1984) Some recent development in low voltage E beam testing of IC’s, Proc.EMSA 42:460–464

    Google Scholar 

  • Castaing R, Guiniert A (1949) Application of electron probes to metallographic analysis (in French), Proc. ICEM Mtg. 1:60–63

    Google Scholar 

  • Catalano JF (1976) SEM on charge injection semiconductor devices, Scanning Electron Microsc. 1976; I: 521–528

    Google Scholar 

  • Catto CJD, Smith KCA (1973) Resolution limits in the surface scanning electron microscope, J. Microsc. 98:417–435

    Google Scholar 

  • Cheng PC and Jan GJ (1987) X-ray Microscopy, Heidelberg, Germany: Springer-Verlag, 415pp.

    Google Scholar 

  • Chiu W, Downing KH, Hobbs LW, Shuman H, Talmon Y (1988) The EMSA committee on cryoelectron microscopy technology, EMSA Bulletin 18-1:16–25

    Google Scholar 

  • Chiu W, Baker ML, Jiang W, Zhou ZH, (2002) Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr Opin Struct Biol. 12-2:263–9.

    Article  Google Scholar 

  • Clarke DR (1970) Review: Image contrast in the scanning electron microscope, J. Material Sci. 5:689–708

    Article  CAS  Google Scholar 

  • Coates DG (1969) Pseudo-kikuchi oritntation analysis in the scanning electron microscope, Scanning Electron Microsc. 29–40

    Google Scholar 

  • Cosslett VE (1954) X-ray microscopy, Med.Biol.Illus. 4:95–103

    PubMed  CAS  Google Scholar 

  • Cosslett VE (1978) Radiation damage in the high-resolution electron microscopy of biological materials: A review, J. Microsc. 113-2:113–129

    Google Scholar 

  • Cowley JM (1990) High-resolution scanning electron microscopy of surfaces, Proc. XIIth ICEM Mtg. 296–297

    Google Scholar 

  • Crewe AV (1973) Production of electron probes using a fieldemission source, In: Progress in Optics XI, ed. Wolf, E : North Holland, 225–246

    Google Scholar 

  • Crewe AV (1985) Towards the ultimate scanning electron microscope, Scanning Electron Microsc. 1985; II:467–472

    Google Scholar 

  • Crewe AV, Eggenberger DN, Wall J, Welter LM (1968) Electron gun using field emission sources, Rev.Sci.Inst. 39:576–583

    Article  Google Scholar 

  • Crewe AV, Isaacson M, Johnson D (1971) A high-resolution electron spectrometer for use in transmission scanning electron microscopy, Rev.Sci.Inst. 42-4:441–420

    Google Scholar 

  • Crewe AV, Lin PSD (1976) The use of backscattered electrons for image purposes in a scanning electron microscope, Ultramicrosc. 1:231–238

    Google Scholar 

  • 97–104

    Google Scholar 

  • Danilatos GD (1988) Foundations of environmental scanning electron microscopy, In: Advances in Electronics and Electron Physics, ed. Hawkes, P NY: Academic Press, 109

    Google Scholar 

  • Diehl P, McCartney MR, Smith DJ (1990) Effects of electron irradiation on alkaline earth fluorides, Proc. XIIth ICEM Mtg. 4:794–795

    Google Scholar 

  • Dilly PN (1980) Enhanced contrast of cilia using low accelerating voltages as an aid to low power survey and counting, Scanning 3:283–284

    Google Scholar 

  • Dodson TA, Joy DC (1990) Fast fourier transform techniques for measuring SEM resolution. Proc. XIIth ICEM Mtg. 406–407

    Google Scholar 

  • Downing KH (1991) Spot-scan imaging in transmission electron microscopy, Science, 251(4989):53-59

    Google Scholar 

  • Duncumb P (1957) In: X-ray Microscopy it and it Microradiography, ed. Cosslett, VE, Engstrom, A and Pattee, HH, NY: Academic Press, p. 435.

    Google Scholar 

  • Echlin P (1971) The examination of biological material at low temperatures, Scanning Electron Microsc. 1:225–232

    Google Scholar 

  • Echlin P (1991) Recent advances in specimen coating techniques for electron microscopy, Scanning Electron Microscopy, 1:225–232

    Google Scholar 

  • Echlin P (1992) Low-Temperature Microscopy and Analysis. Plenum Press: New York and London.

    Google Scholar 

  • Erlandsen SL, Gould PR, Frethem C, Wells CL, Pawley JB, Hamilton DW (1989a) Membrane fixation for high-resolution low voltage SEM: Studies on Giardia, rat spermatozoa, and mouse macrophages. Scanning 11:169–175

    Google Scholar 

  • Erlandsen SL, Bemrick WJ, Pawley J (1989b) High-resolution electron microscopic evidence for the filamentous structure of the cyst wall in Giardia muris and Giardia duodenalis. J. Parasitology 75:787–797

    Article  CAS  Google Scholar 

  • Erlandsen SL, Frethem C, Autrata R (1990a) Workshop on high-resolution immunocytochemistry of cell surfaces using field emission SEM, J. Histochem.Cytochem. 38:1779–1780

    CAS  Google Scholar 

  • Erlandsen SL, Sherlock LA, Bemrick WJ (1990b) The detection of Giardia muris and Giardia lamblia cysts by immunofluorescence in animal tissues and fecal samples subjected to cycles of freezing and thawing. J. Parasitology 76:267–271

    Article  CAS  Google Scholar 

  • Erlandsen SL, Bemrick WJ, Schupp DE, Shields JM, Jarroll EL, Sauch JF, Pawley JB (1991) High-resolution immunogold localization of Giardia cyst wall antigens using field emission SEM sixth secondary and backscatter electron imaging, J. Histochem.Cytochem. 38:625–632

    Google Scholar 

  • Erlandsen SL, Russo AP, Turner JN (2004), Evidence for Adhesive Activity of the Ventrolateral Flange in Giardia lamblia, J. Eukaryot. Microbiol. 51-1:73–80

    Article  Google Scholar 

  • Evans AC, Franks J (1981) Specimen coating for high-resolution scanning electron microscopy, Scanning 4:169–174

    CAS  Google Scholar 

  • Everhart TE, Thornley RFM (1960) Wide-band detector formicro-ampere low-energy electron current, J. Sci.Inst. 37:246–248

    Article  Google Scholar 

  • Everhart TE, Wells OC, Oatley CW (1959) Factors affecting contrast and resolution in the scanning electron microscope, J. Elec.Cont. 7:97–111

    Article  CAS  Google Scholar 

  • Faulk WP, Taylor GM (1971) An immuno colloid method for the electron microscope, Immunocytochem, 8:1081–1083

    Article  CAS  Google Scholar 

  • Ferguson VL, Bushby AJ, and Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone, J. Anat. 203:191–202

    Article  PubMed  Google Scholar 

  • Fourie JT, (1981) Electric effects in contamination and electron beam etching, Scanning Electron Microsc. 1981; I:155–162

    Google Scholar 

  • Franks J, Clay CS, Peace GW (1980) Ion beam thin film deposition, Scanning Electron Microsc. I:155–162

    Google Scholar 

  • Frosien J, Plies E, Anger K (1989) Compound magnetic and electrostatic lenses for low voltage applications. J. Vac.Sci.Technol. B7 6:1874

    Article  Google Scholar 

  • Gerace L, Burke B (1988) Functional organization of the nuclear envelope, Ann.Rev.Biochem. 4:335–374

    CAS  Google Scholar 

  • Gerlach RL, MacDonald NC (1976) Recent advances in scanning auger instrumentation, Scanning Electron Microsc. I:199–206

    Google Scholar 

  • Glaeser RM (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct.Res. 36:466

    Article  PubMed  CAS  Google Scholar 

  • Glaeser RM (1975) Radiation damage and biological electron microscopy, In: Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. Siegel, BM and Beaman, DR. NY: Wiley and Sons, 205–230

    Google Scholar 

  • Goodman SL, Park K, and Albrecht RM (1990) A correlative approach to colloidal-gold labeling with video enhanced light microscopy, low voltage scanning electron microscopy and high voltage electron microscopy, In: Colloidal-Gold: Methods and Applications, ed. Hayat, MA, Van Nostrand Reinhold, NY, 369–409

    Google Scholar 

  • Gray J, Corey D, Ellis G, Sokol R (1989) Microchannel plate-based detection systems for scanning electron microscopy, Proc.EMSA 47:762–767

    Google Scholar 

  • Haggis GH (1987) Freeze-fracture of cell nuclei for high-resolution SEM and deep-etch TEM, Proc. Electron Microsc. Soc. Am. 45:560–564

    Google Scholar 

  • Haggis GH, Pawley JB (1988) Freeze-fracture of 3T3 cells for high-resolution scanning electron microscopy. J. Microsc. 150:211–218

    PubMed  CAS  Google Scholar 

  • Hainfeld J (1977) Understanding and using field emission sources, Scanning Electron Microsc. I:591–604

    Google Scholar 

  • Hashimoto N, Todokoro H, Fukuhara S, Senoo K (1982) Process characterization of MOS devides by scannnig electron microscopy with 0.5-1kV electrons, Jpn. J. Appl. Phys. I (Japan) 21:199–203

    CAS  Google Scholar 

  • Hasselbach J, Reike U, Straub M (1983) An imaging secondary electron detector for the scanning electron microscope, Scanning Electron Microsc. II:467–478

    Google Scholar 

  • Hayes TL (1973) Scanning Electron Microscopy, In: Advanced Techniques in Biological Electron Microscopy, ed. Koehler, JK, Heidelberg: Springer-Verlag, 154–209

    Google Scholar 

  • Hayes TL (1980) Biophysical aspects of scanning electron microscopy, Scanning Electron Microsc. I:1–10

    Google Scholar 

  • Hefter J (1987) Morphological characterizations of materials using low voltage scanning electron microcsopy, Scanning Microsc. 1:13–21

    Google Scholar 

  • Helbig JF, Rydgren RD, Kotorman L (1987) Channel plate detection in low energy scanning electron microscopy, Scanning Microsc. IV:1491–1499

    Google Scholar 

  • Hermann R, Pawley J, Nagatani T, Müller M (1988) Double-axis rotary shadowing for high-resolution scanning electron microscopy, Scanning Electron Microsc. II:1215–1230

    Google Scholar 

  • Herter P, Tresp G, Hentschel H, Zierold K, Walther P (1991) High-resolution SEM of frozen-hydrated and freeze substituted kidney tissue, J. Microsc. 161-2:375–385

    Google Scholar 

  • Heuser JE (1979) Quick-freeze, deep-etch preparation of samples for 3D electron microscopy, Trends Biochem. Sci. 6:64–68

    Google Scholar 

  • Hobbs LW (1979) Radiation effects in analysis of inorganic specimens by TEM, In: Introduction to Analytical Electron Microscopy, ed. Hren, JJ, Goldstein, JI and Joy, DC, NY: Plenum Press, 437–480

    Google Scholar 

  • Holy J, Simerly C, Paddock S, Schatten G (1991) Three-dimensional imaging of fertilization and early development, J. EM Tech. 17:384–400

    CAS  Google Scholar 

  • Horisberger M, Rosset J (1977) Colloidal-gold: a useful maker for transmission and scanning electron microscopy, J. Histochem.Cytochem. 25:295–305

    CAS  Google Scholar 

  • Horisberger M (1979) Evaluation of colloidal-gold as a cytochemical marker for transmission and scanning electron microscopy, Biol.Cellulaire 36:253–58

    CAS  Google Scholar 

  • Hren J (1986), Barriers to AEM: Contamination and etching, In: Principles of Analytical Microscopy, eds. Joy, D, Romig, AD and Goldstein, J, NY-London: Plenum Press, 353–375

    Google Scholar 

  • Humphreys CJ, Bullough TJ, Devenish RW, Maher DM, Turner PS (1990) The interaction of electron beams with solids - some new effects, Proc. XIIth ICEM Mtg. 4:788–789

    Google Scholar 

  • Ichinokawa T (1990) Scanning low energy electron diffraction microscopy combined with scanning tunnling microscopy, Proc. XIIth ICEM Mtg. 303–303

    Google Scholar 

  • Ingram P, Morosoff N, Pope L, Allen F, Tisher C (1976) Some camparisons of the techniques of sputter (coating) and evaporative coating for scanning electron microscopy, Scanning Electron Microsc. I:75–82

    Google Scholar 

  • Irino S, Murakami T, Fujita T, Nagatani T, Kaneshige T (1978) Microdissection of tannin-osmium impregnated specimens in the scanning electron microscope: Demonstration of arterial terminals in human spleen, Scanning Electron Microsc. I:111–116

    Google Scholar 

  • Isaacson M, Langmore JP (1974) Determination of the non-localization of the inelastic scattering of electrons by electron microscopy, Optik 41:92–96

    Google Scholar 

  • Jakubowicz A (1987) Theory of electron beam induced current and cathodoluminescence contrasts from structural defects of semiconductor crystals: Steady-state and time-resolved, Scanning Microsc. 1-2:515–533

    Google Scholar 

  • Johnson TJA (1985a) Aldehyde fixatives: Quantification of acid-producing reactions, J. EM Tech. 2:129–138

    CAS  Google Scholar 

  • Johnson TJA (1985b) Glutaraldehyde fixation chemistry: A scheme for rapid crosslinking and evidence for rapid oxygen consumption, In: Science of Biological Specimen Preparation, ed. Johari, O, AMF O’hare (Chicago) IL: Scanning Electron Microscopy, Inc., 51–62

    Google Scholar 

  • Jones AV (1989) High-resolution at low voltage: A new approach, Proc. EMSA 47:76–77

    Google Scholar 

  • Jones SJ, Boyde A, and Ali NN (2004)The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts, Anat. and Embryol, 170-3:247–256

    Google Scholar 

  • Joy DC, Newbury DE, Myklebust RL (1982) The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope, J. Microsc. 128-II: RP1-RP2

    Google Scholar 

  • Joy DC (1984) Resolution in low voltage SEM, Proc. EMSA 42:444–445

    Google Scholar 

  • Joy DC (1985) Resolution in low voltage scanning electron microscopy, J. Microsc. 140-3:283–292

    Google Scholar 

  • Joy DC (1987) A note on charging in low voltage SEM, Microbeam Anal. 22:83–86

    Google Scholar 

  • Joy DC (1991a) Contrast in high-resolution scanning electron microscope images, J. Microsc. 161-2:343–355

    Google Scholar 

  • Joy DC (1991b) LVSEM, In: Electron Microscopy and Microanalysis 1987, ed. Brown, LM, Institute of Physics Conference Series, 175–180

    Google Scholar 

  • Joy DC and Pawley JB (1993) high-resolution Scanning Electron Microscopy, Ultramicrosc., 47:80–100

    Google Scholar 

  • Keery WJ, Leedy KO, Galloway KF (1976) Electron beam effects on microelectronic devices, Scanning Electron Microsc. I:507–514

    Google Scholar 

  • Kellenberger E (1991) The potential of cryofixation and freeze substitution: Observations and theoretical considerations, J. Microsc. 161, II:183–203

    Google Scholar 

  • Kelley RO, Dekker RA, Bluemink JG (1973) Ligand-mediated osmium binding: Its applications in coating biological specimens for SEM, J. Ultrastr.Res. 45:254–258

    Article  CAS  Google Scholar 

  • Kemmenoe BH, Bullock GR (1983) Structure analysis of sputter-coated and ion-beam sputter-coated films: A comparative study, J. Microsc. 132-2:153–163

    Google Scholar 

  • Kersker M, Neilsen C, Otsuji H, Miyokawa T, Nakagawa S (1989) The JSM-890 ultra high-resolution scanning electron microscope, Proc. EMSA 47:88–89

    Google Scholar 

  • Kimoto S and Hashimoto H (1966) Stereoscopic observation in scanning microscopy using multiple detectors, In: The ElectronMicroprobe, Proc. Symp. held in Washington, D.C., October, 1964, eds. Heinrich, KFJ and Wittry, DB, New York, NY: John Wiley and Sons,480–489

    Google Scholar 

  • Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Bagley S, Allen TD and Wilson KL (2004). A stable actin-dependent filament network links nuclear pore complexes to nucleoli and Cajal bodies. J Cell Sci; 117: 2481–2490.

    Article  PubMed  CAS  Google Scholar 

  • Knoll M (1935) Aufladepotentiel und sekundaremission electronenbestrahlter korper, Z. Phys. 16:467–475

    Google Scholar 

  • Koike H, Ueno K, Suzuki M (1971) Scanning device combined with conventional electron microscope, Proc.EMSA 29:28–29

    Google Scholar 

  • Kosuge T, Hashimoto H, Sato M and Komoto S (1970) Quality of the secondary electron image at low accelerating voltage, In: Microscopie Electronique, ed. Favard, P. Paris: Society Francaise de Microscopie Electronique, 201–202

    Google Scholar 

  • Kotera M, Muarat K, Nagami K (1981) Monte Carlo simulation of a 1-10 keV electron scattering on a gold target, J. Appl.Phys. 52-2:997–1003

    Article  Google Scholar 

  • Krause SJ, Maracas GN, Varhue WJ, Joy DC (1989) Low voltage, high-resolution scanning electron microscopy of semiconductors, Proc. EMSA 47:82–83

    Google Scholar 

  • Kubotsu A, Ueda M (1980) A new conductive treatment of the specimen for scanning electron microscopy, J. Electron Microsc. 29-1:45–53

    Google Scholar 

  • Langford LA, Coggeshall RE (1980) The use of potassium ferricyanide in nural fixation, The Anatomical Record 197:297–303

    Article  PubMed  CAS  Google Scholar 

  • Langmuir DB (1937) Theoretical limitations of cathode-ray tubes, Proc. IRE 24-8:977–991

    Article  Google Scholar 

  • Leamy HJ, Kimerling LC, Ferris SD (1978) Electron beam induced current, Scanning Electron Microsc. 1978, I: 717–726

    Google Scholar 

  • LeFloch H, Franceschi JL, Gourand T, Launay P (1987) Digital image acquisition in scanning electron microscopy, Scanning 9:26–30

    Google Scholar 

  • LeGressus C, Durand JP, Massignon D, Deacon OL (1983) Electron channelling effect on secondary electron image contrast, Scanning Electron Microsc. II:537–542

    Google Scholar 

  • Lepault J, Erk I, Nicolas G, Ranck JL (1991) Time resolved cryo-electron microscopy of vitrified muscular components, J. Microsc. 161-1:47–59

    Google Scholar 

  • Levi-Setti R, Wang YL, Crow G (1984) High spatial resolution SIMS with the UC-HRL scanning ionmicroprobe, J. Phys. (Paris) 45, C9-197-C9-205

    Article  Google Scholar 

  • Li H, DeRosier DJ, Nicholson WV, Nogales E, and Downing KH (2002) Microtubule structure at 8 Å resolution. Structure 10:1317–1328

    Article  PubMed  CAS  Google Scholar 

  • Lim SS, Ris H, Schnasse B (1987) Pigment granules in goldfish xanthophores are attached to intermediate filaments, J. Cell Biol. 105, 37a

    Google Scholar 

  • Lindroth M, Bell PB, Fredriksson BA (1988) Comparison of the effects of critical point drying and freeze-drying on cytoskeletons and microtubules, J. Microsc. 151-2:103–114

    Google Scholar 

  • Lindroth M, Sundgren JE (1989) Ion-beam-sputtered and magnetron-sputtered thin films on cytoskeletons: A high-resolution TEM study, Scanning 11:243–253

    Google Scholar 

  • Liu J, Cowley JM (1988) High-resolution secondary electron imaging in a scanning transmission electron microscopy instrument, Scanning Microsc. 2-1:65–81

    Google Scholar 

  • MacDonald NC (1971) Auger electron spectroscopy for scanning electron microscopy Scanning Electron Microsc I:89–96

    Google Scholar 

  • Malecki M, Ris H (1991) Preparation of cell suspensions for ultrastructural studies, Scanning 13-1:82–83

    Google Scholar 

  • Malecki M, Walther P (1991) High pressure freezing of cell aggregates for LVSEM, Scanning 13-1:68–69

    Google Scholar 

  • Martin JP, Jenkinson G, Bulgin D (1985) Quantitative scanning electron microscopy using integrated digital image store for on-line image analysis, Scanning 7:239-242

    Google Scholar 

  • Martin TF (1989) Cell cracking: permeabilizing cells to macromolecular probes. In Methods in Enzymology, Academic Press, New York. 168:225–233

    Google Scholar 

  • 245–259

    Google Scholar 

  • McMullan D (1953b) The scanning electron microscope and the electron-optical examination of surfaces, Electron. Eng.(England) 25:46–50

    Google Scholar 

  • McMullan D (1990) The prehistory of scanned image microscopy, Part 2: The scanning electron microscope, Proc. Roy. Microsc. Soc. 25:189–194

    Google Scholar 

  • McMullin PG (1976) Quality evaluation of the GaAs-AlGaAs heterostructure wafers using the electron beam induced current technique, Scanning Electron Microsc. I:543–550

    Google Scholar 

  • Menzel E, Buchanan R (1985) Some recent developments in low voltage E-beam testing of ICs, J. Microsc. 140-3:331–349

    Google Scholar 

  • Menzel E, Kubalek E (1982) Fundamentals of electron beam testing of integrated circuits, Scanning 5:103–122

    Google Scholar 

  • Miyokawa T, Norioka S, Goto S (1988) Development of a conical anode FE gun for low voltage SEM, Proc. EMSA 46:978–979

    Google Scholar 

  • Miyoshi M, Isikawa M, Okumura K (1982) Effects of electron beam testing on the short channel metal oxide semiconductor characteristics, Scanning Electron Microsc. 1982, IV:1507–1514

    Google Scholar 

  • Moll SH, Healey F, Sullivan B, Johnson W (1979) Further development of the converted backscattered electron detector, Scanning Electron Microsc. II:149–154

    Google Scholar 

  • Morandi C, Vanzi M, Bianco F, Neri R (1989) A PC-AT-based system for the acquisition of SEM images, Scanning 11:81–85

    Google Scholar 

  • Mullerova I (2001) Imaging of specimens at optimized low and very low energies in scanning electron microscopes. Scanning. 23-6:379–94.

    Google Scholar 

  • Müller M (1992) The Integrating Power of Cryofixation Based Electron Microscopy in Biology. Acta Microscopica. 1:37–44.

    Google Scholar 

  • Müller M, Hermann R (1990) Towards high-resolution SEM of biological materials, Proc. XIIth ICEM Mtg. 4–5

    Google Scholar 

  • Munger B, Mumaw V (1976) Specimen preparation for SEM study of cells and cell organelles in uncoated preparations, Scanning Electron Microsc. I:275–280

    Google Scholar 

  • Murakami T, Jones AL (1980) Conductive staining of biological specimens for non-coated scanning electron microscopy: Double coat staining by tannin-osmium and osmium-thiocarbohydrazide-osmium methods, Scanning Electron Microsc. I:221–226

    Google Scholar 

  • Murata K, Kawata H, Nagami K (1987) Electron scattering of in low voltage scanning electron microscopy targets, Scann.Microsc.Suppl. I:83–91

    Google Scholar 

  • Murphy J (1978) Non-coating techniques to render biological specimens conductive, Scanning Electron Microsc. II:175–194

    Google Scholar 

  • Murphy J (1980) Non-coating techniques to render biological specimens conductive: 1980 update, Scanning Electron Microsc. I:209–220

    Google Scholar 

  • Nagatani T and Saito S (1986a) Instrumentation for ultra high-resolution scanning electron microscopy, In: Electron Microscopy 1986, ed. Imura T, 2101–2108

    Google Scholar 

  • Nagatani T, Saito S (1986b) Instrumentation for ultra high-resolution scanning electron microscopy, Proc. XIIth ICEM Mtg. 2101–2104

    Google Scholar 

  • Nagatani T, Sato M, Osumi M (1990) Development of an ultra high-resolution low voltage (LV) SEM with an optimized "in-lens" design, Proc. XIIth ICEM Mtg. 388–389

    Google Scholar 

  • Newbury DE,Marinenko RB, Brught DS, Myklebust RL (1988) Computer-aided imaging: Quantitative compositional mapping with the electron probe microanalyzer, Scanning 10: 213–255

    Google Scholar 

  • Nixon WC (1955) Improved resolution with x-ray projection microscope, Nature 175:1078–1079

    Article  PubMed  CAS  Google Scholar 

  • Nomura S, Komoda T, Kameryo T, Nakaizumi V (1973) Stable field emission gun with an electronic feedback system, Scanning Electron Microsc. 65–72

    Google Scholar 

  • Oatley CW, Everhart TE (1957) The examination of p-n junctions with the scanning electron microscope, J. Electronics II, 6:568–570

    Article  Google Scholar 

  • Oatley CW, Nixon WC and Pease RFW (1965) Scanning Electron Microscopy, In: Advances in Electronics and Electron Physics, New York, NY: Academic Press, 181–247

    Google Scholar 

  • Oatley CW (1972) The Scanning Electron Microscope, Part I: The Instrument, Cambridge, UK:The University Press, 1–194

    Google Scholar 

  • Oatley CW (1975) The tungsten filament gun in the scanning electron microscope, J. Phys. E.: Sci. Inst. 8:1–5

    Google Scholar 

  • Oatley CW (1982) The early history of the scanning electron microscope, J. Appl. Phys. 53-2: R1-R13

    Article  Google Scholar 

  • Ogura K, Ono A, Kersker MM,(1989a) Reduction in contamination using a specimen heating holder in an ultrahigh-resolution SEM, Proc.EMSA 47:724–725

    Google Scholar 

  • Ogura K, Adachi S, Satoh T, Watebe T, Kersher MM (1989b) Magnetron sputter coating for ultra high-resolution scanning electron microscopy (Simultaneous coating of platinum and tungsten using a magnetron sputter coater), Proc. EMSA 47:80–81

    Google Scholar 

  • Ohama J, Ono A, Harada Y, Gotoh S (1986) An ultra high-resolution SEM equipped with strongly excited objective lens and field emission gun, Proc. XIth ICEM Mtg. 373–374

    Google Scholar 

  • Ohshita A, Shimoyana H, Maruse S (1978) Brightness in the hot cathode electron gun at high emission densities, J. Electron Microsc. 27-4:253–257

    Google Scholar 

  • Ohtsuka A, Murakami T, Irino S, Jones AL (1981) Mounting of biological microsamples on protein coats for TaOTO non-coated scanning electron microscopy, Scanning Electron Microsc. II:83–86

    Google Scholar 

  • Orloff J (1981) A comparison of lanthanum hexaboride, cold field emission and thermal field emission electron guns for low voltage scanning electron microscopy, Scanning Electron Microsc. II:83–86

    Google Scholar 

  • Orloff J (1985) Thermal field emission for low voltage scanning electron microscopy, J. Microsc. 140, III:303–311

    Google Scholar 

  • Osumi M, Yamada N, Nagatani T (1988a) High-resolution low voltage SEM of cell wall regeneration of yeast Saccharomyces pombe protoplasts, Proc.EMSA 46:208–209

    Google Scholar 

  • Osumi M, Baba M, Naito N, Taki A, Yamada N, Nagatani T (1988b) High-resolution low voltage scanning electron microscopy of uncoated yeast cells fixed by the freeze-substitution method, J. Electron Microsc.37-1:17–30

    Google Scholar 

  • Osumi M, Yamada N, Kobori H, Taki A, Naito N, Baba M, Nagatani T (1989) Cell wall formation in regenerating protoplasts of Schizosaccharomyces pombe: Study by high-resolution low voltage scanning electron microscopy, J. Electron Microsc. 38-6:437–468

    Google Scholar 

  • Osumi M, Yamada N, Kobori H (1990) Biological application of ultrahigh-resolution low voltage scanning electron microscope, S-900LV: Ultrastructure of glucal fibrils of the reverting protoplast in fission yeast, Hitachi Instrument News, Electron Microscopy Edition 19:38–39

    Google Scholar 

  • Osumi M, Yamada N, Yaguchi H, Kobori H, Takashi Nagatani T, and Sato M (1995) Ultrahigh-resolution Low-voltage SEM Reveals Ultrastructureof the Glucan Network Formation from Fission Yeast Protoplast, J.Elect. Microsc. 44:198–206

    CAS  Google Scholar 

  • Osumi M, Konomi M, Sugawara T, Takagi T, and Baba M (2006) High-pressure freezing is a powerful tool for visualization of Schizosaccharomyces pombe cells: ultra-low temperature and low-voltage scanning electron microscopy and immunoelectron microscopy, J. Electron Microsc. 55-2: 75–88.

    Article  Google Scholar 

  • Pawley JB (1972) Charging artifacts in the scanning electron microscope. Scanning Electron Microsc. I:153–160

    Google Scholar 

  • Pawley JB (1974) Performance of SEM scintillator materials, Scanning Electron Microsc. 27–34

    Google Scholar 

  • Pawley JB (1978) Design and performance of presently available TV-rate stereo SEM systems. Scanning Electron Microscopy. I:l57–66

    Google Scholar 

  • Pawley JB (1984a) SEM at low beam voltage, Proc. EMSA 42:440–444

    Google Scholar 

  • Pawley JB (1984b) Low voltage scanning electron microscopy, J. Microsc. 136:45–68

    CAS  Google Scholar 

  • Pawley JB (1985a) Low voltage scanning electron microscopy in electron optical systems, Scanning Electron Microsc. 253–272

    Google Scholar 

  • Pawley JB (1985b) Strategy for locating and eliminating sources of main frequency magnetic stray field, Scanning 7:43–46

    Google Scholar 

  • Pawley JB (1987a) Use of pseudo-stereo techniques to detect stray field in the SEM, Scanning 9-3:134–136

    Google Scholar 

  • Pawley JB (1987b) Low voltage scanning electron microscopy, Microbeam Anal. 22:83–86

    Google Scholar 

  • Pawley JB (1990) Practical Aspects of high-resolution LVSEM, Scanning, 12:247–252,

    Google Scholar 

  • Pawley JB (1992) LVSEM for high-resolution Topographic and Density Contrast Imaging. in Advances in Electronics and Electron Physics,ed. Hawkes PW and Kazan, B, Academic Press, New York 83:203–274,

    Google Scholar 

  • Pawley JB (1997) Development of Field-emission Scanning Electron Microscopy for Imaging Biological Surfaces, Scanning, 19-5:324–336

    Google Scholar 

  • Pawley JB, ed. (2006) Handbook of Biological Confocal Microscopy, 3rd edition, Springer/Plenum NY

    Google Scholar 

  • Pawley J, Hayes TL, Hook G (1978) Preliminary studies of coated complementary freeze-fractured yeast membranes viewed directly in the SEM, Scanning Electron Microsc. II:683–690

    Google Scholar 

  • Pawley JB, Norton JT (1978) A chamber attached to the SEM for fracturing and coating frozen biological specimens, J. Microsc. 112:169–182

    PubMed  CAS  Google Scholar 

  • Pawley JB, Hook G, Hayes TL, Lai C (1980) Direct scanning electron microscopy of frozen-hydrated yeast, Scanning 3-3:219–226

    Google Scholar 

  • Pawley JB, Wall J (1982) A low voltage SEM optimized for high-resolution topographical imaging, Proc. EUREM 1:383–384

    Google Scholar 

  • Pawley JB, Ris H (1987) Structure of the cytoplasmic filament system in freeze-dried whole mounts viewed by HVEM, J. Microsc. 13:319–332

    Google Scholar 

  • Pawley JB, Albrecht RM (1988) Imaging colloidal-gold labels in LVSEM, Scanning 10:184–189

    CAS  Google Scholar 

  • Pawley JB, Erlandsen SL (1989) The case for low voltage high-resolution scanning electron microscopy of biological specimens, Scann.Microsc.Suppl. 3:163–178

    Google Scholar 

  • Pawley JB, Walther P, Shih SJ, Malecki M (1991) Early results using high-resolution, low voltage, low temperature SEM, J. Microsc. 162-2:327–335

    Google Scholar 

  • Pease RFW, Hayes TL (1966) Scanning electron microscopy of biological material, Nature 210:1049

    Article  PubMed  CAS  Google Scholar 

  • Pease RFW, Nixon WC (1965) High-resolution SEM, J. Sci.Instrum. 42:31–35

    Article  Google Scholar 

  • Pease RFW, Hayes TL, Camp AS, Amer NM (1966) Electron microscopy of living insects, Science 154:1185–1186

    Article  PubMed  CAS  Google Scholar 

  • Pease RFW, Nixon WC (1968) EM of sprouting seeds, Proc.EMSA 26:88–89

    Google Scholar 

  • Peters KR (1979) Scanning electron microscopy at macromolecular resolution in low energy mode on biological specimens coated with ultra thin metal films, Scanning Electron Microsc. II:133–148

    Google Scholar 

  • Peters KR (1980) Penning sputtering of ultra thin metal films for high-resolution electron microscopy, Scanning Electron Microsc. I:143–154

    Google Scholar 

  • Peters KR (1982) Conditions required for high quality high magnification images in secondary electron scanning electron microscopy, Scanning Electron Microsc. IV:1359–1372

    Google Scholar 

  • Peters KR (1985) Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures, Scanning Electron Microsc. IV:1519–1544

    Google Scholar 

  • Peters KR (1986a) Rationale for the application of thin, continuous metal films in high magnification electron microscopy, J. Microsc. 142:25–34

    CAS  Google Scholar 

  • Peters KR (1986b) Metal coating thickness and image quality in scanning electron microscopy, Proc. EMSA 44:664–667

    Google Scholar 

  • Peters KR (1988) Current state of biological high-resolution scanning electron microscopy, Proc. EMSA 46:180–181

    Google Scholar 

  • Peters KR (1989) Ultra high-resolution SEM at high voltage images individual Fab fragments applied as molecular label to cell surface receptors, Proc. EMSA 47:71–72

    Google Scholar 

  • Peters (1991) Scanning electron microscopy: Contrast at high magnification, In: Microbeam Analysis 1984, ed. Romig AD and Goldstein JJ, 77–80

    Google Scholar 

  • Peters KR, Fox MD (1990) Ultra-high-resolution cinematic digital 3D imaging of the cell surface by field emission scanning electron microscopy, Proc. XIIth ICEM Mtg. 12–13

    Google Scholar 

  • Pfeiffer HC (1972) Basic limitations of probe forming systems due to electron-electron interactions, Scanning Electron Microsc. 113–120

    Google Scholar 

  • Polasko KJ, Yau YW, Pease RFW (1983) Low energy electron beam lithography, Optical Eng. 22:195–198

    CAS  Google Scholar 

  • Postek MT (1987) Resolution and measurement in the scanning electron microscope, Proc.EMSA 45:534–535

    Google Scholar 

  • Postek MT, Keery WJ, Frederick NV (1990a) Development of a low-profile high-efficiency microchannel-plate detector system for SEM imaging and metrology, Scanning/90 Abst. FACMS Inc., 53

    Google Scholar 

  • Postek MT, Keery WJ, Frederick NV (1990b) Low-profile microchannel-plate electron detector system for SEM, Proc. XIIth ICEM Mtg. 378–379

    Google Scholar 

  • Read NC, Jeffree CE (1991) Low temperature scanning electron microscopy in biology, J. Microsc. 161-I:47

    Google Scholar 

  • Reimer L (1979) Electron-specimen interactions, Scanning Electron Microsc. II:111–124

    Google Scholar 

  • Ris H (1985) The cytoplasmic filament system in critical point dried whole mounts and plastic-embedded sections, J. Cell Biol. 100:1474–1487

    Article  PubMed  CAS  Google Scholar 

  • Ris H (1988) Application of LVSEM in the analysis of complex intracellular structures, Proc. EMSA 46:212–213

    Google Scholar 

  • Ris H (1989) Three-dimensional imaging of cell ultrastructure with high-resolution low voltage SEM, Inst.Phys.Conf.Ser. 98 (Chp.16), 657–662

    Google Scholar 

  • Ris H (1990) Application of low voltage, high-resolution SEM in the study of complex intracellular structures,Proc. XIIth ICEM Mtg. 18–19

    Google Scholar 

  • Ris H (1991) The three-dimensional structure of the nuclear pore complex as seen by high voltage electron microscopy and high-resolution low voltage scanning electron microscopy, EMSA Bull. 21-1:54–56

    Google Scholar 

  • Ris H (1997) High-resolution field-emission scanning electron microscopy of nuclear pore complex. Scanning 19:368–375

    Article  PubMed  CAS  Google Scholar 

  • Ris H and Pawley JB (1989) Analysis of complex three-dimensional structures involved in dynamic processes by high voltage electron microscopy and low voltage high-resolution scanning electron microscopy, In: it Microscopy of it Subcellular it Dynamics, ed. Pattner, H Boca Raton, FL: CRC Press, 309–323

    Google Scholar 

  • Ris H, Malecki M (1993) High-resolution field-emission scanning electron-microscope imaging of internal cell structures after epon extraction from sections—a new approach to correlative ultrastructural and immunocytochemical studies. J Struct Biol 111:148–157

    Google Scholar 

  • Robards AW and Sleytr UB (1985) Low Temperature Methods in Biological Electron Microscopy, Amsterdam: Elsevier

    Google Scholar 

  • Robinson VNE (1974) The construction and uses of an efficent backscattered electron detector for SEM, J. Phys.E: Sci.Instrum. 7:650–652

    Article  Google Scholar 

  • Roderick Y, Lim H, Aebi U, Stoffler D (2006) From the trap to the basket: getting to the bottom of the nuclear pore complex, Chromosoma 115:15–26

    Article  Google Scholar 

  • Rosencwaig A (1982) Thermal wave imaging, Science 218:223–228

    Article  PubMed  CAS  Google Scholar 

  • Studer D, Michel M, Müller M, (1989) High-pressure freezing comes of age. Scanning Microsc 3, Suppl 3:253–268

    Google Scholar 

  • Russell PE (1984) Microchannel plates as specialized scanning electron microscopy detectors, Scanning Electron Microsc. 197–200

    Google Scholar 

  • Russell PE (1988) Low voltage SEM for metrology and inspection, Microbeam Anal. 23:463–465

    Google Scholar 

  • Russell PE, Mancuso JF (1985) Microchannel plate detector for low voltage scanning electron microscopes, J. Microsc. 140 III:323–330

    Google Scholar 

  • Saito S, Nakaizumi Y, Mori H, Nagatani T (1982) A field emission SEM controlled by microprocessor, EMI I, (Deutsch Gessellschaft fur Electronenmikroscopy e.V.) 379, 380

    Google Scholar 

  • Salpeter MM, Marchaterre M, Harris R (1988) Distribution of extrajunctional acetylcholine receptors on a vertebrate muscle:Evaluated by using a scanning electron microscope autoradiographic procedure, J. Cell Biol. 106:2087–2093

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Nakaizumi Y, Yamada M, Nagatani T (1990) Development of a low accelerating voltage SEM (S-900H), Hitachi Instrument News, Electron Microscopy Edition 19:45–49

    Google Scholar 

  • Schmid R, Brunner M, (1986) Design and application of a quadrupole detector for low voltage scanning electron microscopy, Scanning 8-6:294–299

    Google Scholar 

  • Seiler H (1976) Determination of the "information depth" in the SEM, Scanning Electron Microsc. I:9–16

    Google Scholar 

  • Sewell PB, Ramachandran KN (1978) Grid aperture contamination in electron guns using directly heated lanthanum hexaboride sources, Scanning Electron Microsc. I:221–232

    Google Scholar 

  • Shaffner TH, Hearle JWS (1976) Recent advances in understanding specimen charging, Scanning Electron Microsc. I:61–70

    Google Scholar 

  • Shao Z, Crewe AV (1987) Chromatic aberration effects in small electron probes, Ultramicrosc. 23:169

    Article  Google Scholar 

  • Shao Z, Crewe AV (1988) A study on the optimization of aperture in an aberrated probe forming system, Optik, 79-3:105–110

    Google Scholar 

  • Shao Z, Crewe AV (1989) On the resolution of the low-energy reflection microscope based on wave electron optics, Ultramicrosc. 31:199

    Article  Google Scholar 

  • Sitte H, Edelman L and Neumann K (1987) Cryofixation without pretreatment at ambient pressure. In: Cryotechniques in Biological Electron Microscopy, eds. Steinbrecht, RA and Zierold, K, Berlin: Springer, 87–113

    Google Scholar 

  • Smith KCA (1956) The scanning electron microscope and its fields of application, PhD thesis, Engineering School, Cambridge University, UK.137–138

    Google Scholar 

  • Speth AJ, Fang FF (1965) Effects of low energy electron irradiation on Si-insulated gate FETs, Appl.Phys.Let. 7:6

    Article  Google Scholar 

  • Statham PJ (1988) Pitfalls and advances in quantitative elemental mapping, Scanning 10: 245–252

    Google Scholar 

  • Studer D, Michel M and Müller M (1989) High pressure freezing comes of age, Scanning Microscopy, Suppl. 3, 1989: The Science of Biological Specimen Preparation for Microscopy and Microanalysis, eds. Albrecht RM and Ornberg RL, Chicago (AMF O’Hare), IL: Scanning Microscopy Intl., 253–269

    Google Scholar 

  • Sugiyama N, Ikeda S, Uchikawa Y (1986) Low voltage SEM inspection of micro electronic devices, J. Electron Microsc. (Japan) 35 1:9–18

    Google Scholar 

  • Sugiyama N, Ikeda S, Uchikawa Y (1988) SEM voltage contrast mechanism of passivated devices, Scanning 10-1:3–8

    Google Scholar 

  • Swanson LW, Rathkey DS (1989) A comparison of Schottky emission and cold field emission cathodes, Proc.EMSA 47:90–91

    Google Scholar 

  • Szedon JR, Sandor JE (1965) The effect of low energy electron irradiation of metal-oxide-semiconductor structures, Appl.Phys.Let. 6-9:181–182

    Google Scholar 

  • Talmon Y (1984) Radiation damage to organic inclusions in ice, Ultramicrosc. 14:305–316

    Article  CAS  Google Scholar 

  • Tamura N, Saito H, Ohyama J, Aihara R, Kabaya A, (1988) Field emission SEM using strongly excited objective lens, Proc.EMSA 68:69–70

    Google Scholar 

  • Tanaka K (1980) Scanning electron microscopy of intracellular structures, In: International Review of Cytology, NY: Academic Press, 97–115

    Google Scholar 

  • Tanaka K (1981) Demonstration of intracellular structures by high-resolution scanning electron microscopy, Scanning Electron Microsc. II:1–8

    Google Scholar 

  • Tanaka K (1990) High-resolution scanning electron microscopy in biology, Proc. XIIth ICEM Mtg. 14–15

    Google Scholar 

  • Thompson-Coffe C, Coffe G, Schatten H, Mazia D, and Schatten G (1996) Cold-Treated Centrosome: Isolation of the Centrosomes from Mitotic Sea Urchin Eggs, Production of an Anticentrosomal Antibody, and Novel Ultrastructural Imaging. Cell Motil. Cytoskel. 33: 197–207.

    Article  CAS  Google Scholar 

  • Thon F (1965) Z.Naturforsch 20a:154

    Google Scholar 

  • Thornhill JW, MacKintosh IM (1965) Application of the scanning electron microscope to semiconductor device structures, Microelectronics and Reliability (GB) 4:96–100

    Google Scholar 

  • Thornley RFM (1960) Recent developments in scanning electron microscopy, Proc.EUREM 173–176

    Google Scholar 

  • Thornley RFM, Cartz L (1962) Direct examination of ceramic surfaces with the scanning electron microscope, J. Am.Ceram.Soc. 45:425–428

    Article  CAS  Google Scholar 

  • Todokoro H, Fukuhara S, Sakitani Y (1980) Low acceleration SEM, Proc.EMSA 38:70–71

    Google Scholar 

  • Todokoro H, Fukuhara S, Komoda T (1983) Stroboscopic scanning electron microscopy with 1 keV electrons, Scanning Electron Microsc. II:561–568

    Google Scholar 

  • Tuggle DW, Watson SG (1984) A low voltage field emission column with a Schottky emitter, Proc.EMSA 42:454–457

    Google Scholar 

  • Tuggle DW, Swanson LW, Gesley MA (1986) Current density distribution in a chromatically limited electron probe,J. Vac.Sci.Tech. 4-1:131–134

    Google Scholar 

  • Vanderburgh DJ, Ackerley CA, Lynn DH, Anderson RC (1987) The use of silver nitrate staining and backscattered electron imaging to visualize nematode sensory structures, Scanning Microsc. 1-IV: 1881–1886

    Google Scholar 

  • Venables JA, Harland CJ,(1973) Electron backscattering patterns - A new technique for obtaining crystallographic information in the SEM, Phil.Mag. 27:1193–1200

    Article  CAS  Google Scholar 

  • Vermeulen JP (2004) 12 Years Zeiss Gemini FESEM Technology. Imaging Microsc. Spring. 34–35

    Google Scholar 

  • Volbert B (1984) Low voltage scanning electron microscopy and its applications, Electron Opt.Rep. 31:44–53

    Google Scholar 

  • von Ardenne M (1938) The scanning electron microscope: Practical construction (in German), Z.Phys. 19:407–416

    Google Scholar 

  • Walker CGH, Prutton M, Dee JC, ElGomati MM, Cowham MJ (1989) An ultra high vacuum compatible backscattered electron detector, Inst.Phys.Conf.Ser. 98 (Chpt. 12),555–558

    Google Scholar 

  • Wall JS (1980) Contamination in the SETM at ultra high vacuum, Scanning Electron Microsc. I:99–106

    Google Scholar 

  • Walther P, Hentschel J, Herter P, Müller T, Zierold K (1990a) Imaging of intramembranous particles in frozen-hyrated cells (Saccharomyces cerevisiae) by high-resolution cryo SEM, Scanning 12:300–307

    Google Scholar 

  • Walther P, Herter P, Hentschel J, Hentschel H (1990b) High-resolution scanning electron microscopy of kidney tissue using cryo-techniques, Proc. XIIth ICEM Mtg. 8–9

    Google Scholar 

  • Walther P, Autrata R, Chen Y, Pawley JB (1991) Backscattered electron imaging for high-resolution surface SEM with a new type YAG detector, Scanning Microsc. 5: 301–310

    PubMed  CAS  Google Scholar 

  • Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD and Mattaj IW (2001) The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins The EMBO Journal 20: 5703–5714

    Google Scholar 

  • Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fomerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import, J. Cell Biol, 158-1:63–77

    Article  CAS  Google Scholar 

  • Waltzthony D, Moor H, Gross H (1981) Ice crystals specifically decorate hydrophilic sites on freeze-fractured model membranes, Ultramicrosc. 6:259–266

    Google Scholar 

  • Wang YL, Raval A, Levi-Setti R (1989) Dendritic oxide growth on the surface of liquid gallium, Scanning Microsc. 3 III:731–737

    Google Scholar 

  • Watabe T, Hoshino T, Harada Y (1978) The visibility of individual ferritin particles in a scanning electron microscope with a field emission gun, Ultramicrosc. 3:19–27

    Article  CAS  Google Scholar 

  • Wells OC (1974) Resolution of the topographic image in the SEM, Scanning Electron Microsc. 1–8

    Google Scholar 

  • Wells OC (1975) Scanning Electron Microscopy, New York, NY:McGraw Hill

    Google Scholar 

  • Wells OC (1978) Note on signal-to-noise ratio (SNR) in the scanning electron microscope, Scanning Electron Microsc. I:99–302

    Google Scholar 

  • Wells OC (1979) Effects of collector take-off angle and energy filtering on the BSE image in the SEM, Scanning 2:199–216

    Google Scholar 

  • Wells OC, Oatley CW (1959) Factors affecting contrast and resolution in the SEM, J. Electron Control 7:97–111

    Google Scholar 

  • Wells OC, Bremer CG (1970) Collector turret for scanning electron microscope, Rev.Sci.Inst. 41:1034–1037

    Article  CAS  Google Scholar 

  • Wells OC, Broers AN, Bremer CG (1973) Method for examining solid specimens with improved resolution in the scanning electron microscope (SEM), Appl.Phys.Let. 23-6:353–355

    Article  Google Scholar 

  • Welter LM, Coates VJ, (1974) High-resolution scanning electron microscopy at low accelerating voltages, Scanning Electron Microsc. 59–66

    Google Scholar 

  • Wepf, R, Gross,H (1990) Pr/Ir/C, A powerful coating material for high-resolution SEM, Proc. XIIth ICEM Mtg. 6–7

    Google Scholar 

  • Wepf R, Amrein M, Burkli U, Gross H (1991) Platinum-iridium-carbon, a high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163:51–65

    PubMed  CAS  Google Scholar 

  • Wergin WP and Pawley JB (1980) Recording and projecting stereo pairs ofscanning electron micrographs, Scanning Electron Microscopy I:239–249

    Google Scholar 

  • Wight SA, and Zeissler CJ (1999) Direct Measurement of Electron Beam Scattering in the Environmental Scanning Electron Microscope Using Phosphor Imaging Plates, Scanning, 22: 167–172

    Article  Google Scholar 

  • Wildhaber I, Gross H, Moor H (1985) Comparitive studies of very thin shadowing films produced by atom beam sputtering and electron beam evaporation, Ultramicrosc. 16:312–330

    Google Scholar 

  • Winkler H, Wildhaber I, Gross H, (1985) Decoration effects on the surface of a regular protein layer, Ultramicrosc. 16:331–339

    Article  CAS  Google Scholar 

  • Wolf ED, Everhart TE (1969) Annular diode detector for high angular resolution pseudo-kikuchi patterns, Scanning Electron Microsc. 41–44

    Google Scholar 

  • Yamada S, Ito T, Gouhara K, Uchikawa Y (1991) Electron count imaging in SEM, Scanning 13:165–171

    Google Scholar 

  • Yamazaki S, Kawawoto H, Saburi K, Naktasuka H, Buchanan R (1984) Improvement in SEM gun brightness at low-kV using an intermediate extraction electrode, Scanning Electron Microsc. I: 23–28

    Google Scholar 

  • Yamazaki S, Sato T, Aota S, Buchanan R (1989) Dual stage SEM with thermal field-emission gun, Proc.EMSA 47:94–95

    Google Scholar 

  • Yokota Y, Hashimoto H, Yamaguchi T (1990) Electron radiation damage of natural zeolites at room and low temperature, Proc. XIIth ICEM Mtg. 4:808–809

    Google Scholar 

  • Zach J, Rose H (1986) Efficient detection of secondary electrons in low voltage scanning electron microscopy, Scanning 8-6:285–293

    Google Scholar 

  • Zach J (1989) Design of a high-resolution low voltage scanning electron microscope, Optik 83-1:30–40

    Google Scholar 

  • Zobacova J, and Frank L (2003) Specimen charging and detection of signal from non-conductors in a cathode lens-equipped scanning electron microscope. Scanning 25-3:150–156.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pawley, J.B. (2008). LVSEM for Biology. In: Schatten, H., Pawley, J.B. (eds) Biological Low-Voltage Scanning Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72972-5_2

Download citation

Publish with us

Policies and ethics