The Early Development of the Scanning Electron Microscope

  • Dennis McMullan


Secondary Electron Scanning Transmission Electron Microscope Electron Multiplier Secondary Emission Silicon Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, H. (1962) “Studies on high current density thermionic cathodes”. PhD Dissertation, University of Cambridge.Google Scholar
  2. Allen, J.S. (1947) An improved electron multiplier particle counter. Rev. Sci. Instrum. 19, 739–749.CrossRefGoogle Scholar
  3. Allen, J.W. and Smith, K.C.A. (1956) Electron microscopy of etched germanium surfaces. J. Electronics 1, 439–443.CrossRefGoogle Scholar
  4. D. Atack and K. C. A. Smith, (1956) “The scanning electron microscope. A new tool in fiber technology,” Pulp Pap. Mag. Can. (Convention issue) 57, 245–251.Google Scholar
  5. Bain, A. (1843) Electric time-pieces and telegraphs. British Patent No 9745, filed 27 May 1843.Google Scholar
  6. Baxter, A.S. (1949) “Detection and analysis of low-energy disintegration particles.” Ph.D. Dissertation, University of Cambridge.Google Scholar
  7. Bernard, R. and Davoine, F. (1957) The scanning electron microscope (in French). Ann. Univ. Lyon Sci. Sect. B[3] 10, 78–86.Google Scholar
  8. Bowden, F.P. and McAuslan, J.H.L. (1956) Slow decomposition of explosive crystals. Nature 178, 408–410.CrossRefGoogle Scholar
  9. Brachet, C. (1946) Note on the resolution of the scanning electron microscope (in French). Bull. Assoc. Tech. Marit. Aeronaut. 45, 369–378.Google Scholar
  10. Breton, B., McMullan, D. and Smith, K.C.A. (eds, 2004). “Sir Charles Oatley and the scanning electron microscope”, Adv. Imaging Electron Phys. 133 (P.W. Hawkes, editor-in-chief), Elsevier Academic Press: San Diego, London.Google Scholar
  11. Bruining, H. and de Boer, J.H. (1938) Secondary emission. Physica (Amsterdam) 5, 17–30.CrossRefGoogle Scholar
  12. Burnett, C.E., (1938) The Monoscope. RCA Review 2, 414–420.Google Scholar
  13. Chang, T.H.P. (1967) “Combined micro-miniature processing and microscopy using a scanning electron probe system”. PhD Dissertation, University of Cambridge.Google Scholar
  14. Crewe, A.V. (1966) Scanning electron microscopes: is high-resolution possible? Science 154, 729–738.PubMedCrossRefGoogle Scholar
  15. Crewe, A.V., Eggenberger, D.N., Wall, J. and Welter, L.M. (1968) Electron gun using a field-emission source. Rev. Sci. Instrum. 39, 576–583.CrossRefGoogle Scholar
  16. Drescher, H., Reimer, L., and Seidel, H. (1970) Back-scattering coefficient and secondary electron yield from 10 - 100 keV electrons in the scanning electron microscope (in German). Z. angew. Phys. 29, 331.Google Scholar
  17. Everhart T.E. and Thornley R.F.M. (1960) Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Inst. 37, 246–248 (1960).CrossRefGoogle Scholar
  18. Fujita, H. (1986) “The History of Electron Microscopes”, 11th International Congress on Electron Microscopy: Kyoto, Japan. pp. 187–193.Google Scholar
  19. Gabor, D. (1945) “The Electron Microscope”. Hulton Press: London.Google Scholar
  20. Hall, L.D. (1958) Electronic ultra-high vacuum pump. Rev. Sci. Instrum. 29, 367–370.CrossRefGoogle Scholar
  21. Hawkes, P.W. and McMullan, D. (2004) A forgotten French scanning electron microscope and a forgotten text on electron optics. Proc. Roy. Microsc. Soc. 39, 285–290.Google Scholar
  22. Jervis, P. (1971/72) Innovation in electron-optical instruments – two British case histories. Research Policy 1, 174–207.CrossRefGoogle Scholar
  23. Knoll, M. (1935) Static potential and secondary emission of bodies under electron irradiation (in German). Z. tech. Phys. 16, 467–475.Google Scholar
  24. Knoll, M. (1941) Detection of attached oxide layers on iron with the scanning electron microscope (in German). Phys. Z. 42, 120–122.Google Scholar
  25. Kushnir,Yu.M., Fetisov, D.V. and Raspletin, K.K. (1961) Scanning electron microscope and X-ray microanalyser. Bull. Acad. Sci. USSR. Phys. Ser. (Engl. Transl) 25, 709–714.Google Scholar
  26. Léauté, L.[A.] (1946) Applications of the electron microscope in metallurgy (in French). In “L’Optique Electronique” ( Broglie ed.) Editions de la Revue d’Optique Théorique et Expérimental: Paris, 1946, 209–220.Google Scholar
  27. Liebmann, G. (1955) The magnetic pinhole electron lens. Proc. Phys. Soc. Ser. B 68, 682–685.CrossRefGoogle Scholar
  28. Mahl, H. (1940) Supermicroscopic determination of the orientation of single aluminium crystals (in German). Metallwirtschaft 19, 1082–1085.Google Scholar
  29. Matthes, I. (1942) Investigation of the secondary electron emission from various alloys (in German).. Z. tech. Phys. 22, 232–236.Google Scholar
  30. McAuslan, J.H.L. and Smith, K.C.A. (1956) The direct observation in the scanning electron microscope of reactions, in Electron Microscopy: Proceedings of the Stockholm Conference, Sept. 1956, edited by F. S. Sjostrand and J. Rhodin (Academic, New York 1957), pp. 343–345.Google Scholar
  31. McMullan, D.(1952) “Investigations relating to the design of electron microscopes”. Ph.D. Dissertation, Cambridge University.Google Scholar
  32. McMullan, D. (1953) An improved scanning electron microscope for opaque specimens. Proc. Inst. Electr. Engrs. 100, Part II, 245–259.Google Scholar
  33. McMullan, D. (1988) Von Ardenne and the scanning electron microscope. Proc. Roy. Microsc. Soc. 23, 283–288.Google Scholar
  34. McMullan, D. (1990) The prehistory of scanned image microscopy, Part 1: scanned optical microscopes. Proc. Roy. Microsc. Soc. 25, 127–131.Google Scholar
  35. McMullan, D. (1995) Scanning electron microscopy 1928 – 1965. Scanning 17, 175–185.CrossRefGoogle Scholar
  36. McMullan, D. (2004) A history of the scanning electron microscope, 1928 – 1965. Adv. Imaging Electron Phys. 133, 523–545.CrossRefGoogle Scholar
  37. Morton, G.A. and Ramberg, E.G. (1939) Point projector electron microscope. Phys. Rev. 56, 705.CrossRefGoogle Scholar
  38. Mulvey, T. (1962) Origins and historical development of the electron microscope. Brit. J. Appl. Phy. 13, 197–207.CrossRefGoogle Scholar
  39. Oatley, C.W. (1982) The early history of the scanning electron microscope. J. Appl. Phys. 53, R1-R13.CrossRefGoogle Scholar
  40. Oatley, C.W. and Everhart, T.E. (1957) The examination of p-n junctions with the scanning electron microscope. J. Electron. 2, 568–570.CrossRefGoogle Scholar
  41. Oatley, C.W., McMullan, D., and Smith, K.C.A. (1985) The development of the scanning electron microscope. in “The Beginnings of Electron Microscopy” (P.W. Hawkes ed.) Adv. Electronics Electron Phys. Suppl. 16, 443–482.Google Scholar
  42. Page, D.H. (1958) Reflexion electron microscopy at high angles. Brit. J. Appl. Phys. 9, 60–67CrossRefGoogle Scholar
  43. Page, R.S. (1954) A compact console-type electron microscope. J. Sci. Instrum. 31, 200–205.CrossRefGoogle Scholar
  44. Palluel, P. (1947) Backscattered components of electron secondary emission from metals (in French) C.R. Acad. Sci. 224, 1492–1494.Google Scholar
  45. Pease, R. F. W. and Nixon W.C. (1965) High-resolution scanning electron microscopy. J. Sci. Instrum. 42, 31–35.CrossRefGoogle Scholar
  46. Peters, K-R. (1982) Generation, collection and properties of an SE-1 enriched signal suitable for high-resolution SEM on bulk specimens, in “Electron Beam Interactions with Solids”, SEM (Inc), Chicago, pp 363–372.Google Scholar
  47. Reisner, J.H. (1989) An early history of the electron microscope in the United States. Adv. Electronics Electron Phys. 73, 134–231.Google Scholar
  48. Ruska. E. (1933) The electron microscopic imaging of surfaces irradiated with electrons (in German). Z. Phys. 83, 492–497.Google Scholar
  49. Ruska E, and Müller, H.O. (1940) Progress on the imaging of electron irradiated surfaces (in German). Z Phys 116, 366–369.CrossRefGoogle Scholar
  50. Sander, K.F. (1951) “An automatic electron trajectory tracer and contributions to the design of an electrostatic electron microscope”. PhD Dissertation, University of Cambridge.Google Scholar
  51. Smith, K. C. A. (1956) “The scanning electron microscope and its fields of application”. Ph.D. Dissertation, University of Cambridge.Google Scholar
  52. Smith, K. C. A. (1959) Scanning electron microscopy in pulp and paper research. Pulp Pap. Mag. Can. 60, T366-T371.Google Scholar
  53. Smith, K. C. A. (1960) A versatile scanning electron microscope, in The Proceedings of the European Regional Conference in Electron Microscopy, Delft, 29 August–3 September 1960 (Houwink, A.I. and Spit, B.J. eds.; Nederlandse Vereniging voor Elektronenmicroscopie, Delft n.d.) pp. 177–180.Google Scholar
  54. Smith, K. C. A. and Oatley, C. W. (1955) The scanning electron microscope and its fields of application. Br. J. Appl. Phys. 6, 391–399.CrossRefGoogle Scholar
  55. Stewart, A.D.G. (1962) Investigation of the topography of ion bombarded surfaces with a scanning electron microscope, in Electron Microscopy, Fifth International Congress for Electron Microscopy, Philadelphia, Pennsylvania, 29 August – 5 September, 1962 (Breeze, S.S., ed.; Academic Press, New York, 1962) pp. D12-D13.Google Scholar
  56. Stewart, A.D.G. (1985) The origins and development of scanning electron microscopy. J. Microsc. 139, 121–127.Google Scholar
  57. Stewart, A.D.G. and Snelling, M.A. (1965) A new scanning electron microscope, in Electron Microscopy 1964, Proceedings of the Third European Regional Conference, Prague, 26 August – 3 September 1964 (Titlbach. M. ed.: Publishing House of the Czechoslovak Academy of Sciences: Prague) pp. 55–56.Google Scholar
  58. Stintzing, H. (1929) Method and device for automatically assessing, measuring and counting particles of any type, shape and size (in German). German Patents Nos 485155–6.Google Scholar
  59. Synge, E.H. (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362.Google Scholar
  60. Synge, E.H.(1932) An application of piezo-electricity to microscopy. Phil. Mag. 13, 297–300.Google Scholar
  61. Telefunken A G (1935) Improvements in or relating to cathode-ray tube picture transmitters. British Patent No. 465715 (Convention Date (Germany) Oct. 3 1935.Google Scholar
  62. Thornley, R.F.M. (1960) “New applications of the electron microscope”. PhD Dissertaion, Universty of Cambridge.Google Scholar
  63. Thornley, R.F.M. (1960) Recent developments in scanning electron microscopy, in The Proceedings of the European Regional Conference in Electron Microscopy, Delft, 29 August–3 September 1960 (Houwink, A.I. and Spit, B.J. eds.; Nederlandse Vereniging voor Elektronenmicroscopie, Delft n.d.) pp. 173–176.Google Scholar
  64. Thornley R.F.M. and Cartz L. (1962) Direct examination of ceramic surfaces with the scanning electron microscope. J. Am. Ceram. Soc. 45, 425–428.CrossRefGoogle Scholar
  65. von Ardenne, M.(1937a) Improvements in electron microscopes. British Patent No 511204, convention date (Germany) 18 Feb.Google Scholar
  66. von Ardenne, M. (1938a) The scanning electron microscope. Theoretical fundamentals (in German). Z. Phys. 109, 553–572.CrossRefGoogle Scholar
  67. von Ardenne, M. (1938b) The scanning electron microscope. Practical construction (in German). tech. Phys. 19, 407–416.Google Scholar
  68. von Ardenne, M. (1940) “Electron Microscopy” (in German). Springer Verlag: Berlin .Google Scholar
  69. von Ardenne, M. (1972) “A Happy Life in Engineering and Research” (in German) Kinder Verlag: Munich and Zurich.Google Scholar
  70. von Ardenne, M. (1985) On the history of scanning electron microscopy, the electron microprobe, and early contributions to transmission electron microscopy. in “The Beginnings of Electron Microscopy” (PW Hawkes ed), Adv. Electronics Electron Phys. Suppl. 16, 1–21.Google Scholar
  71. von Borries, B. (1940) High-resolution images from the electron microscope used in reflection (in German). Z. Phys. 116, 370–378.CrossRefGoogle Scholar
  72. Wells, O.C. (1957). “The construction of a scanning electron microscope and its application to the study of fibres”. Ph.D. Dissertation, Cambridge University.Google Scholar
  73. Wells O.C. (1960) Correction of errors in stereomicroscopy. Br. J. Appl. Phys. 11, 199–201.CrossRefGoogle Scholar
  74. Wells, O. C. (1971) Low-loss image for surface scanning electron microscope. Appl. Phys. Lett. 19, 232–235.CrossRefGoogle Scholar
  75. Wells, O.C., Everhart, T.E., and Matta, R.K.(1965) Automatic positioning of device electrodes using the scanning electron microscope. IEEE. Trans. Electron. Dev. ED-12, 556–563.Google Scholar
  76. Welter, L.M. and Coates, V.J. (1974) High-resolution scanning electron microscopy at low accelerating voltages. Proc. 7 th Ann. SEM Symposium, IIT Research Institute, Chicago. (O. Johari ed.) pp. 59–66.Google Scholar
  77. Wheeler, W.R. (1976) Recent developments in metal-sealed gate valves. J. Vac. Sci. Technol. 13, 503–506.CrossRefGoogle Scholar
  78. Wheeler, W.R. and Carlson, M.A. (1962) Ultra-high vacuum flanges. Trans. AVS Nat. Vac. Symp. 1961, p. 1309–1318, Pergamon Press: OxfordGoogle Scholar
  79. Zworykin, V.A. (1934) Electric Microscope. 1st Congresso Internazionale di Electroradio-biologia 1, pp 672–686.Google Scholar
  80. Zworykin, V.A., Hillier, J., and Snyder, R.L. (1942) A scanning electron microscope. ASTM. Bull. 117, 15–23; (Abstract) Proc. Inst. Radio Engrs. 30, 255.Google Scholar
  81. Zworykin, V.A., Morton, G.A., Ramberg, E.G., Hillier, J. and Vance, A.W. (1945) “Electron Optics and the Electron Microscope”, Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dennis McMullan

There are no affiliations available

Personalised recommendations