Skip to main content

Understanding the Immune System by Computer-Aided Modeling

  • Chapter
Immunoinformatics

Abstract

We describe some computer models of the immune system and in particular of its response to the HIV infection. Then we introduce our model and show some results of simulations of the AIDS disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agur, Z. (1991) Fixed points of majority rule cellular automata with application to plasticity and precision of the immune system. Complex Syst. 5:351-357.

    Google Scholar 

  • Anachini, A., and Mortarini, R. (1999) Il Controllo della Crescita Neoplastica: Ruoli Dell’Immunitá specifica nella risposta alle metastasi. In: G. Bevilacqua, R. Gavari, and P.L. Lollini (Eds.), Invasione e Metastasi. Pacini Editore, Pisa, pp. 325-340.

    Google Scholar 

  • Atlan, H., and Cohen, I.R. (1989) Theories of Immune Networks. Springer-Verlag, Berlin.

    Google Scholar 

  • Bernaschi, M. and Castiglione, F. (2002) Selection of escape mutants from immune recognition during HIV infection. Immunol. Cell Biol. 80:307-313.

    Article  PubMed  CAS  Google Scholar 

  • Bernaschi, M., and Castiglione, F. (2006) HIV-1 strategies of immune evasion. Int. J. Mod. Phys. C 16:1869-1879.

    Google Scholar 

  • Brass, A., Bancroft, A.J., Clamp, M.E., Grencis, R.K., and Else, K.J. (1994) Dynamical and critical behavior of a simple discrete model of the cellular immune system. Phys. Rev. E 50:1589-1593.

    Article  Google Scholar 

  • Burnet, F. (1959) The Clonal Selection Theory of Acquired Immunity. Vanderbilt University, Nashville.

    Google Scholar 

  • Carbone, A., and Gaidano, G. (2001) Acquired immunodeficiency syndrome-related cancer. A study model for the mechanisms contributing to the genesis of cancer. Eur. J. Cancer 37:1184-1187.

    Article  PubMed  CAS  Google Scholar 

  • Castiglione, F., Poccia, F., D’Offizi, G., and Bernaschi, M. (2004) Mutation, fitness, viral diversity and predictive markers of disease progression in a computational model of HIV-1 infection. AIDS Res. Hum. Retrovir. 20:1314-1323.

    Article  PubMed  Google Scholar 

  • Celada, F., and Seiden, P.E. (1992) A computer model of cellular interaction in the immune system. Immunol. Today 13(2):56-62.

    Google Scholar 

  • Celada, F., and Seiden, P.E. (1996) Affinity maturation and hypermutation in a simulation of the humoral immune response. Eur. J. Immunol. 26:1350-1358.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, D., Stauffer, D., and Choudary, P.V. (1990) A unified discrete model of immune response. J. Theor. Biol. 145:207-215.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, D., and Stauffer, D. (1992) Statistical physics of immune networks. Physica A 186:61-81.

    Article  Google Scholar 

  • Chowdhury, D., Deshpande, V., and Stauffer, D. (1994) Modelling immune network through cellular automata: A unified mechanism of immunological memory. Int. J. Mod. Phys. C 5:1049-1072.

    Article  Google Scholar 

  • Chowdhury, D. (1998) Immune network: An example of complex adaptive systems. In: D. Dasgupta (Ed.), Artificial Immune Systems and Their Applications. Springer-Verlag, Heidelberg, pp. 84-104. Cohen, I.R., and Atlan, H. (1989) Network regulation of autoimmunity: An automation model. J. Autoimmun. 2:613-625.

    Google Scholar 

  • Dayan, I., Havlin, S., and Stauffer, D. (1988) Cellular automata generalization of the Weisbuch-Atlan model for immune response. J. Phys. A 21:2473-2476.

    Article  Google Scholar 

  • Farmer, J.D., Packard, N., and Perelson, A.S. (1986) The immune system, adaptation and machine learning. Physica D 22:187-204.

    Article  Google Scholar 

  • Forrest, S., and Hofmeyr, S.A. (2000) Immunology as information processing. In: L.A. Segel and L. Cohen (Eds.), Design Principles for the Immune System and Other Distributed Autonomous Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York, pp. 361-387.

    Google Scholar 

  • Hershberg, U.R., Louzoun, Y., Atlan, H., and Solomon, S. (2001) HIV time hierarchy: Winning the war while losing all the battles. Physica A 289:178-190.

    Article  Google Scholar 

  • Jerne, N.K. (1973) The immune system. Sci. Am. 229:52-60.

    Article  PubMed  CAS  Google Scholar 

  • Jerne, N.K. (1974) Towards a network theory of the immune system. Ann. Immunol. 125C:373-389.

    CAS  Google Scholar 

  • Kaufman, M., Urbain, J., and Thomas, R. (1985) Towards a logical analysis of the immune response. J. Theor. Biol. 114:527-561.

    Article  PubMed  CAS  Google Scholar 

  • Kitano, H. (2001) System biology: Toward system-level understanding of biological system. In: H. Kitano (Ed.), Foundations of System Biology. MIT Press, Cambridge, MA, pp. 1-36.

    Google Scholar 

  • Melief, C.J., Toes, R.E., Medema, J.P., Van der Burg, S.H., Ossendorp, F., and Offringa, R. (2000) Strategies for immunotherapy of cancer. Adv. Immunol. 75:235-282.Morpurgo, D., Serenthà, R., Seiden, P.E., and Celada, F. (1995) Modelling thymic functions in a cellular automaton. Int. Immunol. 7:505-516.

    Google Scholar 

  • Mosier, D., and Sieburg, H.B. (1994) Macrophage-tropic HIV: Critical for AIDS pathogenesis? Immunol. Today 15:332-339.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R.B., and Stauffer, D. (1989) Immune response via interacting three dimensional network of cellular automata. J. Phys. (Paris) 50:1-12.Pandey, R.B., and Stauffer, D. (1990) Metastability with probabilistic cellular automata in an HIV infection. J. Stat. Phys. 61:235-240.

    Google Scholar 

  • Pandey, R.B. (1991) Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection. Physica A 179:442-470.

    Article  Google Scholar 

  • Pantaleo, G., Graziosi, C., and Fauci, A.S. (1993) New concepts in the immunopathogenesis of human immunodeficiency virus infection. N. Engl. J. Med. 328:327-335.

    Article  PubMed  CAS  Google Scholar 

  • Perelson, A.S., and Oster, G.F. (1979) Theoretical studies on clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination. J. Theor. Biol. 81:645-670.

    Article  PubMed  CAS  Google Scholar 

  • Perelson, A.S. (Ed.) (1988a) Theoretical Immunology, Part II. Addison Wesley, Redwood City.

    Google Scholar 

  • Perelson, A.S. (Ed.) (1988b) Theoretical Immunology, Part I. Addison Wesley, Redwood City.

    Google Scholar 

  • Perelson, A.S., and Weisbuch, G.I. (1997) Immunology for physicists. Rev. Mod.Phys. 69:1219-1267.

    Article  CAS  Google Scholar 

  • Perelson, A.S., and Nelson, P.W. (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41:3-44. Preziosi, L. (Ed.) (2003) Cancer Modelling and Simulation. CRC Press , London.

    Google Scholar 

  • Ruskin, H.J., Pandey, R.B., and Liu, Y. (2002) Viral load and stochastic mutation in a Monte Carlo simulation of HIV. Physica A 311:213-220.

    Article  Google Scholar 

  • Segel, L.A., and Perelson, A.S. (1991) Exploiting the diversity of time scales in the immune system: A B-cell antibody model. J. Stat. Phys. 63:1113-1131.

    Article  Google Scholar 

  • Sieburg, H.B., McCutchan, J.A., Clay, O., Caballero, L., Ostlund, and James, J. (1990) Simulation of HIV-infection in artificial immune systems. Physica D 45:208-227.

    Article  Google Scholar 

  • Stauffer, D. (1989) Immunologically motivated cellular automata. In: A. Pires, D.P. Landau, and H.J. Herrmann (Eds.), Computational Physics and Cellular Automata. World Scientific, Singapore, pp. 89-97.

    Google Scholar 

  • Thomè, T., and Drugowich de Felício, J.R. (1996) Probabilistic cellular automaton describing a biological immune system. Phys. Rev. E 53:3976-3981.

    Article  Google Scholar 

  • Varthakavi, V., Smith, R.M., Deng, H., Sun, R., and Spearman, P. (2002) Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus through induction of KSHV Rta. Virology 297:270-280.

    Article  PubMed  CAS  Google Scholar 

  • Weisbuch, G.I., and Atlan, H. (1988) Control of the immune response J. Phys. A 21:189-192.

    Article  Google Scholar 

  • Zorzenon dos Santos, R.M. (1999) Immune responses: Getting close to experimental results with cellular automata models. In: D. Stauffer (Ed.), Annual Review of Computational Physics VI. World Scientific, Singapore, pp. 159-202.

    Google Scholar 

  • Zorzenon dos Santos, R.M., and Coutinho, S.C. (2001) The dynamics of the HIV infection: Acellular automata approach. Phys. Rev. Lett. 87:168102-168114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Bernaschi, M., Castiglione, F. (2008). Understanding the Immune System by Computer-Aided Modeling. In: Schönbach, C., Ranganathan, S., Brusic, V. (eds) Immunoinformatics., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72968-8_8

Download citation

Publish with us

Policies and ethics