MUTANT MOUSE: bona fide Biosimulator for the Functional Annotation of Gene and Genome Networks

  • Yoichi Gondo


The advancements of genomics and genome projects led to the current paradigm that the blueprint of life is depicted in the genome sequences. To decipher the life system, deductive methods have been applied from genome sequences to genes, transcripts, proteins, organelles, cells, tissues, organs, organisms, and populations. As a result we encountered an astronomical scale of complicated molecular and cellular networks in the life system. There is a way, however, to directly connect the function of a single base pair (bp) in genome sequences to the life system by bypassing all the molecular and cellular labyrinths. “MUTANT” provides the ultimate tool as a bona fide biosimulator for the functional annotation of gene and genome networks. Genetics, with mutations and mutants, is revealing the life system. Mendel deduced the concept of “gene” from a large dataset of the pea phenome. Snell discovered the mouse H2 locus by graft rejection that led to the identification and understanding of the major histocompatibility complex. Many other mouse mutants (i.e., nu, scid, lpr, gld, Sl, and W) provided model systems for the functional characterization of key genes in immunological networks. In this context, “reverse genetics” methods have been developed since the 1980s to systematically produce mutant mice carrying a particular gene of interest, for example, transgenic mice, knockout mice, and gene targeting. Recently, more versatile, large-scale, and high-throughput methods such as ENU mutagenesis and insertional mutagenesis are being used to generate mutant mice. This chapter offers a review of the history and current status of mouse mutagenesis and discusses the value of mouse model systems.


Mutant Mouse Mouse Genome Life System Classical Genetic Mutant Mouse Line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, C., and Robson, J.M. (1946) Chemical production of mutations. Nature 157:302.Google Scholar
  2. Augustin, M., Sedlmeier, R., Peters, T., Huffstadt, U., Kochmann, E., Simon, D., Schöniger, M., Garke-Mayerthaler, S., Laufs, J., Mayhaus, M., Franke, S., Klose, M., Graupner, A., Kurzmann, M., Zinser, C., Wolf, A., Voelkel, M., Kellner, M., Kilian, M., Seelig, S., Koppius, A., Teubner, A., Korthaus, D., Nehls, M., and Wattler, S. (2005) Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome 16:405-413.PubMedCrossRefGoogle Scholar
  3. Brown, S.D.M., and Nolan, P.M. (1998) Mouse mutagenesis-systematic studies of mammalian gene function. Hum. Mol. Genet. 7:1627-1633.PubMedCrossRefGoogle Scholar
  4. Capecchi, M.R. (1989) Altering the genome by homologous recombination. Science 244:1288-1292.PubMedCrossRefGoogle Scholar
  5. Donehower, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery, C.A., Jr., Butel, J.S., and Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215-221.PubMedCrossRefGoogle Scholar
  6. Gao, Q., and Yeung, E.S. (2000) High-throughput detection of unknown mutations by using multiplexed capillary electrophoresis with poly(vinylpyrrolidone) solution. Anal. Chem. 72:2499-2506.PubMedCrossRefGoogle Scholar
  7. Gondo, Y., Nakamura, K., Nakao, K., Sasaoka, T., Ito, K., Kimura, M., and Katsuki, M. (1994) Gene replacement of the p53 gene with the lacZ gene in mouse embryonic stem cells and mice by using two steps of homologous recombination. Biochem. Biophys. Res. Commun. 202:830-837.PubMedCrossRefGoogle Scholar
  8. Gondo, Y. (2001) Bioinformatics for the large-scale mouse mutagenesis project. In: N. Baba, L.C. Jain, and R.J. Howlett (Eds.), Knowledge-Based Intelligent Information Engineering Systems & Allied Technologies KES’2001. IOS Press, Tokyo, pp. 763-767.Google Scholar
  9. Hitotsumachi, S., Carpenter, D.A., and Russell, W.L. (1985) Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl. Acad. Sci. USA 82:6619-6621.PubMedCrossRefGoogle Scholar
  10. Hrabè de Angelis, M., and Balling, R. (1998) Large scale ENU screens in the mouse: Genetics meets genomics. Mutat. Res. 400:25-32.PubMedGoogle Scholar
  11. Little, C.C., and Bagg, H.J. (1923) The occurrence of two heritable types of abnormality among the descendants of X-rayed mice. Am. J. Roentgenol. Radiat. Ther. 10:975-989.Google Scholar
  12. Liu, G., Parant, J.M., Lang, G., Chau, P., Chavez-Reyes, A., El-Naggar, A.K., Multani, A., Chang, S., and Lozano, G. (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat. Genet. 36:63-68.PubMedCrossRefGoogle Scholar
  13. Masuya, H., Nakai, Y., Motegi, H., Niinaya, N., Kida, Y., Kaneko, Y., Aritake, H., Suzuki, N., Ishii, J., Koorikawa, K., Suzuki, T., Inoue, M., Kobayashi, K., Toki, H., Wada, Y., Kaneda, H., Ishijima, J., Takahashi, K.R., Minowa, O., Noda, T., Wakana, S., Gondo, Y., and Shiroishi, T. (2004) Development and implementation of a database system to manage a large-scale mouse ENU-mutagenesis program. Mamm. Genome 15:404-411.PubMedCrossRefGoogle Scholar
  14. Michaud, E.J., Culiat, C.T., Klebig, M.L., Barker, P.E., Cain, K.T., Carpenter, D.J., Easter, L.L., Foster, C.M., Gardner, A.W., Guo, Z.Y., Houser, K.J., Hughes, L.A., Kerley, M.K., Liu, Z., Olszewski, R.E., Pinn, I., Shaw, G.D., Shinpock, S.G., Wymore, A.M., Rinchik, E.M., and Johnson, D.K. (2005) Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice. BMC Genomics 6:164.PubMedCrossRefGoogle Scholar
  15. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520-562.Google Scholar
  16. Muller, H.J. (1927) Artificial transmutation of the gene. Science 66:84-87.PubMedCrossRefGoogle Scholar
  17. Murphy, K., Hafez, M., Philips, J., Yarnell, K., Gutshall, K., and Berg, K. (2003) Evaluation of temperature gradient capillary electrophoresis for detection of the factor v leiden mutation : Coincident identification of a novel polymorphism in factor v. Mol. Diagn. 7:35-40.PubMedCrossRefGoogle Scholar
  18. Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y., and Kondo, S. (1996) p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat. Med. 2:577-580.PubMedCrossRefGoogle Scholar
  19. Noveroske, J.K., Weber, J.S., and Justice, M.J. (2000) The mutagenic action of N-ethyl-N-nitrosourea in the mouse. Mamm. Genome 11:478-483.PubMedCrossRefGoogle Scholar
  20. Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C., and Evans, R.M. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611-615.PubMedCrossRefGoogle Scholar
  21. Quwailid, M.M., Hugill, A., Dear, N., Vizor, L., Wells, S., Horner, E., Fuller, S., Weedon, J., McMath, H., Woodman, P., Edwards, D., Campbell, D., Rodger, S., Carey, J., Roberts, A., Glenister, P., Lalanne, Z., Parkinson, N., Coghill, E.L., McKeone, R., Cox, S., Willan, J., Greenfield, A., Keays, D., Brady, S., Spurr, N., Gray, I., Hunter, J., Brown, S.D., and Cox, R.D. (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome 15:585-591.PubMedCrossRefGoogle Scholar
  22. Rogers, D.C., Fisher, E.M., Brown, S.D., Peters, J., Hunter, A.J., and Martin, J.E. (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm. Genome 8:711-713.PubMedCrossRefGoogle Scholar
  23. Russell, W. L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., and Phipps, E.L., (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. USA 76:5818-5819.PubMedCrossRefGoogle Scholar
  24. Russell, W.L., Hunsicker, P.R., Raymer, G.D., Steele, M.H., Stelzner, K.F., and Thompson, H.M. (1982a) Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. USA 79:3589-3591.CrossRefGoogle Scholar
  25. Russell, W.L., Hunsicker, P.R., Carpenter, D.A., Cornett, C.V., and Guinn, G.M. (1982b) Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. USA 79:3592-3593.CrossRefGoogle Scholar
  26. Sakuraba, Y., Sezutsu, H., Takahasi, K.R., Tsuchihashi, K., Ichikawa, R., Fujimoto, N., Kaneko, S., Nakai, Y., Uchiyama, M., Goda, N., Motoi, R., Ikeda, A., Karashima, Y., Inoue, M., Kaneda, H., Masuya, H., Minowa, O., Noguchi, H., Toyoda, A., Sakaki, Y., Wakana, S., Noda, T., Shiroishi, T., and Gondo, Y. (2005) Molecular characterization of ENU mouse mutagenesis and archives. Biochem. Biophys. Res. Commun. 336:609-616.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Yoichi Gondo
    • 1
  1. 1.Functional Genomics Research Group, Population and Quantitative Genomics TeamRIKEN Genomic Sciences CenterTsurumi-ku, YokohamaJapan

Personalised recommendations