Advertisement

Hafnium-Containing Nanocomposites

  • A. D. Pomogailo
  • A. S. Rozenberg
  • G. I. Dzhardimalieva
  • A. M. Bochkin
  • S. I. Pomogailo
  • N. D. Golubeva

New types of hafnium-containing nanocomposites were prepared by combining polymer synthesis and controlled thermolysis. This approach involved the preparation and subsequent thermolysis of hafnium-containing polymers or concurrent solid-state polymerization of hafnium-containing monomers and thermal decomposition of the forming metal-containing polymer at different temperatures. The composition and structure of the synthesized hafnium-containing precursors and thermolysis products are determined by elemental analysis, IR spectroscopy, mass spectrometry, optical microscopy, and x-ray diffraction. Thermodynamic analysis was used to assess the equilibrium composition of the Hf-C-H-O system and establish the conditions under which HfC and HfO2 were formed.

Keywords

Thermolysis Product Hafnium Oxide Tantalum Carbide Hafnium Carbide Dilithium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pomogailo AD, Rozenberg AS, Uflyand IE. (2000) Nanochastitsy metallov v polimerakh :metal nanoparticles in polymers). Khimiya, Moscow.Google Scholar
  2. 2.
    Toth LE. (1971) Transition metal carbides and nitrides. Academic, New York.Google Scholar
  3. 3.
    Newman RW. (1993) Jons Hopkins Apl Technical Digest. 14:24.Google Scholar
  4. 4.
    Kobayashi H, Shimosaka K, Kamiyama Y, Mitamura TJ. (1993) Cheram Soc 101:342.Google Scholar
  5. 5.
    Ache HF, Goschnick J, Sommer M, Emig G, Schoch G, Wormer O. (1994) Thin Solid Film. 241:356.CrossRefGoogle Scholar
  6. 6.
    Emig G, Schoch G, Wormer OJ. (1993) Physique IV. 3:535.Google Scholar
  7. 7.
    Wunder VK, Popovska N, Emig GJ. (1999) Physique IV. 9:509.Google Scholar
  8. 8.
    Motojima S, Kawashima Y. (1996) J Mater Sci. 31:3697.CrossRefGoogle Scholar
  9. 9.
    Wunder V, Popovska N, Wegner A, Emig G, Arnold W. (1998) Surface & Coating Technol. 101:329.CrossRefGoogle Scholar
  10. 10.
    Baklanova NI, Kulyukin VN, Korchagin MA, Lyakchov NZ. (1998) J Mater Synth Proc. 6:15.CrossRefGoogle Scholar
  11. 11.
    Spatenka P, Suhr H, Erker G, Rump M. (1995) Appl Phys A. 60(3):285.CrossRefGoogle Scholar
  12. 12.
    Wöhrle D, Pomogailo AD. (2003) Metal complexes and metals in macromolecules: synthesis, structures, and properties. Wiley, Weinheim.CrossRefGoogle Scholar
  13. 13.
    Hubicki Z. (1998) Ion Exch. 6(1):188.Google Scholar
  14. 14.
    Vibhute CP, Khopkar SM. (1987) Anal Chim Acta. 193:387.CrossRefGoogle Scholar
  15. 15.
    Hubicki Z. (1987(Przem Chem. 66(6):290.Google Scholar
  16. 16.
    Wohrle D. (1992). In: Kricheldorf HR (ed) Handbook of polymer synthesis, part B. Marcel Dekker, New York, p. 1133.Google Scholar
  17. 17.
    Carraher CE Jr. (2006) Transition metal-containing polymers. In: Abd-El-Aziz AS, Carraher CE Jr., Pittman CU, Jr, Zeldin M (eds) Macromolecules containing metal and metal-like elements. (eds.). Wiley, Hoboken, NJ, p. 111.Google Scholar
  18. 18.
    Ziemkowska W, Pasynkiewicz S. (1996) J Organomet Chem. 508:243.CrossRefGoogle Scholar
  19. 19.
    Wali A, Ganeshpure PA, Pillai SM, Satish S. (1994) Eng Chem Res. 33(2):444.CrossRefGoogle Scholar
  20. 20.
    Kharitonov YA, Zaitsev LM. (1968)Zh Neorg Khim. 13(3):902.Google Scholar
  21. 21.
    Takahashi S, Morimoto H, Murata E, et al. (1982) J Polym Sci. Polym Chem. 20(2):565.Google Scholar
  22. 22.
    Takahashi S, Murata E, Kataoka S, et al. (1980) J Polym Sci Part A: Polym Chem. 18(2):661.Google Scholar
  23. 23.
    Sonogashira K, Ohga K, Takahashi S, Hagihara N. (1980) J Organomet Chem. 188(2):237.CrossRefGoogle Scholar
  24. 24.
    Hay AS, (1960) J Org Chem. 25(4):637.CrossRefGoogle Scholar
  25. 25.
    Talalaeva TV, Kocheshkov K. (1971) Metody elementoorganicheskoi khimii. Litii, natrii, kalii, rubidii, tsezii (Techniques of Organoelement Chemistry: Lithium, Sodium, Potassium, Rubidium, Cesium). Nauka, Moscow.Google Scholar
  26. 26.
    Nakamoto K. (1986) Infrared and raman spectra of inorganic and coordination compounds. Wiley, New York.Google Scholar
  27. 27.
    Prozorovskaya ZN, Petrov KI, Komissarova LN. (1968) Zh Neorg Khim. 13(4):965.Google Scholar
  28. 28.
    Besecke S, Schoder G, Ganzler W. FRG Patent 3137840, 1981.Google Scholar
  29. 29.
    Wailes PC, Coutts RSP, Weigold DH. (1974) Organo-metallic chemistry of titanium, zirconium, and hafnium. Academic, New York.Google Scholar
  30. 30.
    Sourdiaucourt P, Derre A, Delhaes P, David P. (1999) J Phys IV. 9:Pr8–373.Google Scholar
  31. 31.
    Gusev AI, Zyryanova AN. (1997) Dokl Akad Nauk. 354: 493.Google Scholar
  32. 32.
    Gusev AI. (1992) Dokl Akad Nauk 322:918.Google Scholar
  33. 33.
    Timofeev AN, Filatov IY, Sevast’yanov VG, Marushkin KI. (1994) Vysokochist Veshchestva. 5:45.Google Scholar
  34. 34.
    Pomogailo AD, Rozenberg AS, Dzhardimalieva GI. (2005) In: Nicolais L, Carotenuto, GH (eds) Controlled pyrolysis of metal-containing precursors as a way for synthesis of metallopolymer nanocomposites, metal–polymer nanocomposites. Wiley, New York, p. 75.Google Scholar
  35. 35.
    Toth LE. (1971) Transition metal carbides and nitrides. Academic Press, New York.Google Scholar
  36. 36.
    Hanko K, Vass G, Szepes L. (1995) J Organomet Chem. 492:235.CrossRefGoogle Scholar
  37. 37.
    Grafov AV, Mazurenko EA, Mel’nik OV, Kofman, VY. (1993) Ukr Khim Zh. 59(12):1235.Google Scholar
  38. 38.
    Rozenberg AS, Nechiporenko GN. (1999) Chem Phys Report. 18(5):905.Google Scholar
  39. 39.
    Emanuel’ NM, Knorre AG. (1962) Kurs khimicheskoi kinetiki (course in chemical kinetics). Vysshaya Shkola, Moscow. 1962.Google Scholar
  40. 40.
    Tret’yakov YD. (2003) Usp Khim. 72(8):731.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • A. D. Pomogailo
    • 1
  • A. S. Rozenberg
    • 1
  • G. I. Dzhardimalieva
    • 1
  • A. M. Bochkin
    • 1
  • S. I. Pomogailo
    • 1
  • N. D. Golubeva
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations