Measuring Areas of Rectangular Fields

Part of the Sources and Studies in the History of Mathematics and Physical Sciences book series (SHMP)

A set of twenty-five solved problems and twelve theorems comprise the two parts or Methods of Chapter 1. In Part I all of the problems focus on finding areas of fields given dimensions in one, two, and/or three different units of measurement, which make the multiplication complex. Fibonacci’s method for multiplication most probably reflects the method common to Pisa, if not much of the Mediterranean world. A crucial factor is one’s ability to move rapidly among the various units, just as a modern person would be expected to move easily among the various metric or English units.


Equal Part Ankle Bone Divided Line Rectangular Field Unequal Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations