Photobiological Methods of Renewable Hydrogen Production

  • Maria L. Ghirardi
  • Pin Ching Maness
  • Michael Seibert


Green Alga Hydrogen Production Photosynthetic Bacterium Hydrogenase Activity Dark Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Basset, R., and Bader, K. P. 1998. Physiological analysis of the hydrogen gas exchange in cyanobacteria. J. Photochem. Photobiol. B: Biol. 43,146-151.Google Scholar
  2. 2.
    Adams, M. W. W., Mortenson, L. E., and Chen, J. S. 1981. Hydrogenase. Biochim. Biophys. Acta 594,105-176. b) Adams, M.W.W. 1990. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1020, 115-145.Google Scholar
  3. 3.
    Adams, M. W. W., and Stiefel, E. I. 1998. Biological hydrogen production: not so elementary. Science 282,1842-1843.Google Scholar
  4. 4.
    Akano, T., Muiro, Y., Fukatsu, K., Miyasaka, H., Ikuta, Y., Matsumoto, H., Hamasaki, A., Shioji, N., Mizoguchi, T., Yagi, K. and Maeda, I. 1996. Hydrogen production by photosynthetic microorganisms. Appl. Biochem. Biotechnol. 57-58, 677-688.Google Scholar
  5. 5.
    Akkerman, I., Janssen, M., Rocha, J., and Wijffels, R. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1195-1208.Google Scholar
  6. 6.
    Akkerman, I., Janssen, M., Rocha, J.M.S., Reith, J.H., and Wijffels, R.H. 2003. Photobiological hydrogen production: Photochemical efficiency and bioreactor design. In, Biomethane & Bio-hydrogen, (J. H. Reith, R. H. Wijffels, and H. Barten, eds.), Chapter 6, Dutch Biological Hydrogen Foundation, Petten, The Netherlands, pp. 124-145.Google Scholar
  7. 7.
    Allen, J.F. 1991. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098, 275-335.Google Scholar
  8. 8.
    Amos, W. 2004. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtiiGreen Algae. NREL/MP-560-35593. /fy04osti/35593.pdf.Google Scholar
  9. 9.
    Antal, T.K., Krendeleva, T.E., Laurinavichene, T.V., Makarova, V.V., Ghirardi, M.L., Rubin, A.B., Tsygankov, A.A. and Seibert, M. 2003. The dependence of algal H2 production on 256 Maria L. Ghirardi, Pin Ching Maness, and Michael Seibert photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607, 153-160.Google Scholar
  10. 10.
    Appel, J., and Schulz, R. 1996. Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystissp. PCC6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochim. Biophys. Acta. 1298, 141-147.Google Scholar
  11. 11.
    Appel, J., and Schulz, R. 1998. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J. Photochem. Photobiol. B: Biol. 47, 1-11.Google Scholar
  12. 12.
    Appel, J., Phunpruch, S., Steimuller, K., and Schulz, R. 2000. The bidirectional hydrogenase of Synechocystissp. PCC6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173,333-338.Google Scholar
  13. 13.
    Arnon, D.I., Mitsui, A. and Paneque, A. 1961. Photoproduction of hydrogen gas coupled with photosynthetic phosphorylation. Science 134, 1425.Google Scholar
  14. 14.
    Artero, V., and Fontecave, M. 2005. Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 249, 1518-1535.Google Scholar
  15. 15.
    Asada, Y., Ishimi, K., Tokumoto, M., Kohno, H. and Tomiyama M. 2005. Hydrogen Production by Co-cultures of Facultative Anaerobes and Photosynthetic Bacteria. Abstracts, COST Action 841 Workshop, Porto, Portugal.Google Scholar
  16. 16.
    Ashby, M. K., and Mullineaux, C. W. 1999. Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol. Lett. 181, 253-260.Google Scholar
  17. 17.
    Avenson, T., Cruz, J.A. and Kramer, D.M., 2004, Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc. Natl. Acad. Sci. USA 101, 5530-5535.Google Scholar
  18. 18.
    Axelsson, R., Oxelfelt, F., and Lindblad, P. 1999. Transcriptional regulation of Nostocuptake hydrogenase. FEMS Microbiol. Lett. 170,77-81.Google Scholar
  19. 19.
    Axelsson, R., and Lindblad, P. 2002. Transcriptional regulation of Nostochydrogenases: effects of oxygen, hydrogen, and nickel. Appl. Environ. Microbiol. 68,444-447.Google Scholar
  20. 20.
    Barbosa, M. J., Rocha, J. M. S., Tramper, J., and Wijffels, R. H. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotech. 85,25-33.Google Scholar
  21. 21.
    Bard, A.J. and Fox, M.A. 1995. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141-145.Google Scholar
  22. 22.
    Benemann, J.R., Berenson, J.A., Kaplan, N.O. and Kamen, M.D. 1973. Hydrogen evolution by a chloroplalst-ferredoxin-hydrogenase system. Proc. Natl. Acad. Sci. USA 70, 2317-2320Google Scholar
  23. 23.
    Bennett, I.M., Farfano, H.M.V., Bogani, F., Primak, A., Liddell, P.A., Otero, L., Sereno, L., Silber, J.J., Moore, A.L., Moore, T.A. and Gust, D. 2002. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420, 398-401.Google Scholar
  24. 24.
    Berenson, J.A. and Benemann, J.R. 1976. Immobilization of hydrogenase and ferredoxins on glass beads. FEBS Lett. 76,105-107.Google Scholar
  25. 25.
    Binder, U., Maier, T., and Böck, A. 1996. Nickel incorporation into hydrogenase 3 from Escherichia colirequires the precursor form of the large subunit. Arch. Microbiol. 165, 69-72.Google Scholar
  26. 26.
    Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R. 1980. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U.S.A. 77, 7342-7346.Google Scholar
  27. 27.
    Blake, D.M. and Kennedy, C. 2005. Hydrogen reactor development and design for photofermentation and photolytic processes. Project PD-19, DOE Hydrogen Program Review, May 23-26, 2005, Scholar
  28. 28.
    Blankenship, R.E. 2002.Molecular Mechanisms of Photosynthesis, Blackwell Science, London. Photobiological Methods of Renewable Hydrogen Production 257Google Scholar
  29. 29.
    Bleijlevens, B., Buhrke, T., van der Linden, E., Friedrich, B. and Albracht, S.P.J. 2004. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutrophaH16 by way of a cyanide ligand to nickel. J. Biol. Chem. 279, 46668-46691.Google Scholar
  30. 30.
    Blokesch, M., Albracht, S. P., Matzanke, B. F., Drapal, N. M., Jacobi, A., and Böck, A. 2004. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide the active site iron of [NiFe]-hydrogenases. J. Mol. Bio. 344,155-167.Google Scholar
  31. 31.
    Boichenko, V.A. and Hoffman, P. 1994. Photosynthetic hydrogen production in prokaryotes and eukaryotes: occurrence, mechanism, and functions. Photosynthetica 30, 527- 552.Google Scholar
  32. 32.
    Boichenko, V.A., Greenbaum, E., and Seibert, M. 2004. Hydrogen production by photosynthetic microorganisms, in Photoconversion of Solar Energy: Molecular to Global Photosynthesis, M.D. Archer and J. Barber, eds., Imperial College Press, London, pp. 397- 452.Google Scholar
  33. 33.
    Boison, G., Schmitz, O., Mikheeva, L., Shestakov, S., and Bothe, H. 1996. Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium. FEBS Lett. 394,153-158.Google Scholar
  34. 34.
    Boison, G., Bothe, H., and Schmitz, O. 2000. Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulansand Anabaena variabilismonitored by RTPCR. Curr. Microbiol. 40:315-321.Google Scholar
  35. 35.
    Brand, J.J., Wright, J. and Lien, S. 1989. Hydrogen production by eukaryotic algae. Biotechnol Bioeng. 33, 1482-1488.Google Scholar
  36. 36.
    Brune, A., Jeong, G., Liddell, P.A., Sotomura, T., Moore, T.A., Moore, A.L. and Gust, D., 2004, Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell. Langmuir 20, 8366-8371.Google Scholar
  37. 37.
    Bryant, D. 1991. Cyanobacterial phycobilisomes: progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L. and Vails IK (eds) Cell Structure Somatic Cell Genetics of Plants, Vol. 7B (The Photosynthetic Apparatus: Molecular Biology and Operation), pp 257-300. Academic Press, New York.Google Scholar
  38. 38.
    Braks, I. J., Hoppert, M., Roge, S., and Mayer, F. 1994. Structural aspects and immunolocalization of the F420-reducing and non-F420-reducing hydrogenases from Methanobacterium thermoautotrophicumMarburg. J. Bacteriol. 176,7677-7687.Google Scholar
  39. 39.
    Buchanan, B.B. 1991. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status and future development. Arch. Biochem. Biophys.289, 1-9.Google Scholar
  40. 40.
    Bui, E.T.N. and Johnson, P.J. 1996. Identification and characterization of [Fe]- hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol. Biochem. Parasitol. 76, 305-310.Google Scholar
  41. 41.
    Buhrke, T., Bleijlevens, B., Albracht, S.P.J., and Friedrich, B. 2001. Involvement of hyp gene products in maturation of the H2-sensing [NiFe] hydrogenase of Ralstonia eutropha. J. Bacteriol. 183,7087-7093.Google Scholar
  42. 42.
    Buhrke, T., Lenz, O., Kraub, N., and Friedrich, B. 2005. Oxygen tolerance of the H2- sensing [NiFe] hydrogenase from Ralstonia eutrophaH16 is based on limited access of oxygen to the active site. J. Biol. Chem. 280,23791-23796.Google Scholar
  43. 43.
    Chen, C.K., and Blaschek, H.P. 1999. Effect of acetate on molecular and physiological aspects of Clostridium beijerinckiiNCIMB 8052 solvent production and strain degeneration. Appl. Environ. Microbiol. 65,499-505.Google Scholar
  44. 44.
    Chen H-C., Yokthongwattana K, Newton A.J. and Melis A. 2003.SulP,a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218, 98-106.Google Scholar
  45. 45.
    Chen H-C. and Melis A. 2004. Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220, 198-210.Google Scholar
  46. 46.
    Chen H-C., Newton A.J. and Melis A. 2005. Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth. Res. 84, 289-296.Google Scholar
  47. 47.
    Chisnell, J.R., Premakumar, R., and Bishop, P.E. 1988. Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 170,27- 33.Google Scholar
  48. 48.
    Claassen, P.A.M., van Groenestijin, J.W., Janssen, A.J.H., van Niel, E.W.J., and Wijffels, R.H. 2000. Feasibility of biological hydrogen production from biomass for utilization in fuel cells. In: Proceedings of the 1st World Conference and Exhibition on biomass for energy and industry, Sevilla, Sapin, 5-9 June 2000.Google Scholar
  49. 49.
    Claassen, P. A. M., de Vrije, T., and Budde, M. A. W. 2004. Biological hydrogen production from sweet sorghum by thermophilic bacteria. In: Proceedings of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection, 10-14 May 2004, Rome, Italy.Google Scholar
  50. 50.
    Cohen, J., Kim, K., Posewitz, M., Ghirardi, M.L., Schulten, K., Seibert, M. and King, P. 2005a. Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]- hydrogenase. Biochem. Soc. Transact. 33, 80-82.Google Scholar
  51. 51.
    Cohen, J., Kim, K., King, P., Seibert, M., and Schulten K. 2005. Finding gas diffusion pathways in proteins: O2 and H2 gas transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13, 1321-1329.Google Scholar
  52. 52.
    Cornejo, J., and Beale, S.I. 1997. Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosynthesis Res. 51,223-230.Google Scholar
  53. 53.
    Cournac, L., Guedeney, G., Peltier, G., and Vignais, P. M. 2004. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystissp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J. Bacteriol. 186,1737-1746.Google Scholar
  54. 54.
    Dalton, H., and Mortenson, L. E. 1972. Dinitrogen (N2) fixation (with a biochemical emphasis). Bacteriol. Rev. 36,231-260.Google Scholar
  55. 55.
    Davidson, J.H., Mantell, S., and Jorgensen, G. 2003. Status of the development of polymeric solar water heating systems Advances in Solar Energy, (D. Yogi Goswami, ed.) Vol. 15, Chapter 6, ASES, Boulder, CO, pp.149-186.Google Scholar
  56. 56.
    De Vitry, C., Oyuang, Y., Finazzi, G., Wollman, F.A. and Kallas, T., 2004, The chloroplast Rieske iron-sulfur protein – at the crossroad of electron transport and signal transduction. J. Biol. Chem. 279, 44621-44627.Google Scholar
  57. 57.
    De la Garza, L., Jeong, G., Liddell, P.A., Sotomura, T., Moore, T.A., Moore, A.L. and Gust, D. 2003. Enzyme-based photoelectrochemical biofuel cell. J. Phys. Chem. B 107, 10252- 10260.Google Scholar
  58. 58.
    Dernedde, J., Eitinger, T., Patenge, N., and Friedrich, B. 1996. hyp gene products in Alcaligenes eutrophusare part of a hydrogenase-maturation system. Eur. J. Biochem. 235,351- 358.Google Scholar
  59. 59.
    Drapal, N., and Böck, A. 1998. Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia colihydrogenase 3 during enzyme maturation. Biochemistry 37,2941-2948.Google Scholar
  60. 60.
    Droux, M., Jacquot, J.P., Miginac-Maslow, M., Gadal, P., Huet, J.C., Crawford, N.A., Yee, B.C., and Buchanan, B.B. 1987. Ferredoxin-thioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch. Biochem. Biophys. 252, 426-439.Google Scholar
  61. 61.
    Einsle, O. Tezcan, F. A., Andrade, S. L., Schmid, B., Yoshida, M., Howard, J. B., and Rees, D. C. 2002. Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMocofactor. Science 297,1696-1700.Google Scholar
  62. 62.
    Eisbrenner, G., Roos, P., and Bothe, H. 1981. The number of hydrogenases in cyanobacteria. J. Gen. Microbiol. 125,383-390.Google Scholar
  63. 63.
    Erbes, D.L., King, D. and Gibbs, M. 1979. Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardiby oxygen. Plant Physiol. 63, 1138-1142.Google Scholar
  64. 64.
    Fascetti, E., D’addario, E. Todini, O., and Robertiello, A. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int. J. Hydrogen Energy 23,753-760.Google Scholar
  65. 65.
    Fedorov, A.S., Kosourov, S., Ghirardi, M.L. and Seibert, M. 2005. Continuous hydrogen photoproduction by Chlamydomonas reinhardtiiusing a novel two-stage, sulfate-limited chemostat system. Appl. Biochem. Biotechnol., 121-124, 403-412.Google Scholar
  66. 66.
    Fiβler, J., Kohring, G. W., and Giffhorn, F. 1995. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopsdudomonas palustris. Arch. Microbial. Biotechnol. 44,43-46.Google Scholar
  67. 67.
    Florin, L., Tsokogou, A. and Happe, T. 2001. A novel type of [Fe]-hydrogenase in the green alga Scenedesmus obliquusis linked to the photosynthetic electron transport chain. J. Biol. Chem. 276, 6125-6130.Google Scholar
  68. 68.
    Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., Ghirardi, M.L. and Seibert, M. 2003. Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur. J. Biochem. 270, 2750-2758.Google Scholar
  69. 69.
    Fox, J. D., Kerby, R. L., Roberts, G. P., and Ludden, P. W. 1996. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrumand the gene encoding the large subunit of the enzyme. J. Bacteriol. 178,1515-1524.Google Scholar
  70. 70.
    Frey, M. 2003. Hydrogenases: hydrogen-activating enzymes. Chembiochem. 3, 153-160.Google Scholar
  71. 71.
    Fujita, Y. and Murakami, A. 1987. Regulation of electron transport composition in cyanobacterial photosynthetic system: stoichiometry among PSI and PSII complexes and their light harvesting antenna and Cyt b 6-f complex. Plant Cell Physiol. 28, 1547-1553.Google Scholar
  72. 72.
    Gallon, J. R. and Chaplin, A. E. 1988. Recent studies on N2 fixation by nonheterocystous cyanobacteria. In: Bothe F. J., de Bruijin F. J., Newton, W. E. (eds) Nitrogen Fixation: Hundreds Years After. Gustav Fischer, Stuttgart, Germany, p. 183.Google Scholar
  73. 73.
    Gantt, E. 1986. Phycobillisomes. In: Staehelin L. A. and Arntzen, C. J. (eds). Encyclopedia of Plant Physiology. Photosynthesis III, (“Photosynthetic Membranes and Light- Harvesting Systems’), Vol. 19, pp 260-268, Academic Presss, New York.Google Scholar
  74. 74.
    Ghirardi, M.L., Togasaki, R.K. and Seibert, M. 1997. Oxygen sensitivity of algal H2- production. Appl. Biochem. Biotechnol. 63-65, 141-151.Google Scholar
  75. 75.
    Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E. and Melis, A. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Trends Biotechnol. 18, 506- 511.Google Scholar
  76. 76.
    Ghirardi, M.L. and Amos, W. 2004. Hydrogen photoproduction by sulfur-deprived green algae – status of the research and potential of the system. Biocycle, 45, 59.Google Scholar
  77. 77.
    Ghirardi, M.L., King, P.W., Posewitz, M.C., Maness, P.C., Fedorov, A., Kim, K., Cohen, J., Schulten K. and Seibert, M. 2005. Approaches to developing biological H2-photoproducing organisms and processes. Biochem. Soc. Transact. 33, 70-72.Google Scholar
  78. 78.
    Ghirardi, M.L., Kin, P., Kosourov, S., Forestier, M., Zhang, L. and Seibert, M. 2005. Development of algal systems for hydrogen photoproduction – addressing the hydrogenase oxygen- sensitivity problem, in: Artificial Photosynthesis, C. Collings, ed., Wiley – VCH Verlag, Weinheim, Germany, pp. 213-227.Google Scholar
  79. 79.
    Gisby, P.E. and Hall, D.O. 1980. Biophotolytic H2 production using alginate-immobilized chloroplasts, enzymes and synthetic catalysts. Nature 287, 251-253.Google Scholar
  80. 80.
    Golden, J. W., and Yooon, H. S. 2003. Heterocyst development in Anabaena. Curr. Opin. Microbiol. 6,557-563.Google Scholar
  81. 81.
    Golubic, S. 1973. The relationship between blue-green alage and crbonate deposits. pp. 434- 472. InThe biology of blue-green alage, Carr, N. G., and Whitton, B. A. (eds.), Univ. of California Press, CA.Google Scholar
  82. 82.
    Gollan, U., Schneider, K., Muller, A., Schuddekopf, K., and Klipp, W. 1993. Detection of the in vivoincorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase in Rhodobacter capsulatus. Eur. J. Biochem. 215,25-35.Google Scholar
  83. 83.
    Grätzel, M.. 1983. Energy Resources through Photochemistry and Catalysis, Academic Press, New York.Google Scholar
  84. 84.
    Graves, D.A., Tevault, C.V., and Greenbaum, E. 1989. Control of photosynthetic reductant: the role of light and temperature on sustained hydrogen photoevolution by Chlamydomonas sp. in an anoxic, carbon-dioxide-containing atmosphere. Photochem. Photobiol. 50, 571-576.Google Scholar
  85. 85.
    Greenbaum, E. 1988. Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys. J. 54, 365-368.Google Scholar
  86. 86.
    Guan, Y., Deng, M., Yu, X., and Zhang, W. 2004. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Engin. J. 19, 69- 73.Google Scholar
  87. 87.
    Guan, Y., Zhang, W., Deng, M., Jin, M., and Yu, X. 2004. Significant enhancement fo photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Biotechnol. Letts. 26, 1031-1035.Google Scholar
  88. 88.
    Guedon, E., Payot, S., Desvaux, M., and Petitdemange, H. 1999. Carbon and electron flow in Clostridium cellulolyticumgrown in chemostat culture on synthetic medium. J. Bacteriol. 181,3262-3269.Google Scholar
  89. 89.
    Gust, D., Moore, T.A. and Moore, A.L. 2000. Photochemistry of supramolecular systems containing C60. J. Photochem. Photobiol. B. Biology 58, 63-71.Google Scholar
  90. 90.
    Gust, D., Moore, T.A. and Moore, A.L. 2001. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40-48.Google Scholar
  91. 91.
    Hageman, R. V., and Burris, R. H. 1978. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl. Acad. Sci. USA 75,2699-2702.Google Scholar
  92. 92.
    Hahn, J.J., Ghirardi, M.L. and Jacoby, W.A. 2004. Effect of process variables on photosynthetic algal hydrogen production. Biotechnol. Progr. 20, 989-991.Google Scholar
  93. 93.
    Hallenbeck, P. C., Meyer, C. M., and Vignais, P. M.1982. Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: purification and molecular properties. J. Bacteriol. 149,708-717.Google Scholar
  94. 94.
    Hallenbeck, P.C. and Benemann, J.R. 2002. Biological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1185-1194.Google Scholar
  95. 95.
    Hammarström, L., Sun, L., Äkermark, B., Styring, S. 2001. A biomimetic approach to artificial photosynthesis: Ru(II)-polypyridine photo-sensitisers linked to tyrosine and manganese electron donors. Spectrochim. Acta Part A 37, 2145-2160.Google Scholar
  96. 96.
    Hansel, A., Axelsson, R. Lindberg, P., Troshina, O. Y., Wunschiers, R., and Lindblad, P. 2001. Cloning and characterization of a hyp gene in the filamentous cyanobacterium Nostoc $s$p. strain 73102.FEMS Microbiol. 201,59-64.Google Scholar
  97. 97.
    Hanus, F.J., Carter, K.R. and Evans, H.J. 1980. Techniques for measurement of hydrogen evolution by nodules. Methods Enzymol. 69, 731-739.Google Scholar
  98. 98.
    Happe, T. and Naber, J.D. 1993. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 214, 475-481.Google Scholar
  99. 99.
    Happe, T., Mosler, B. and Naber, J.D. 1994. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 222, 769- 774.Google Scholar
  100. 100.
    Happe, R. P., Roseboom, W., Pierlk, A. J., Albracht, S. P. J., and Bagley, K. A. 1997. Biological activation of hydrogen. Nature 385,126.Google Scholar
  101. 101.
    Happe, T., Hemschemeier, A., Winkler, M. and Kaminski, A. 2002. Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Scie. 7, 246-250.Google Scholar
  102. 102.
    Happe, T. and Kaminski, A. 2002. Differential regulation of the [Fe]-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 269, 1-11.Google Scholar
  103. 103.
    Happe, T., Schutz, K., and Bohme, H. 2000. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilisATCC 29413. J. Bacteriol. 182,1624-1631.Google Scholar
  104. 104.
    Higuchi, Y., Ogata, H., Miki, K., Yasuoka, N., and Yagi, T. 1999. Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Å resolution. Structure 7,549-556.Google Scholar
  105. 105.
    Hillmer, P. and Gest, H. 1977a. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol. 129,724-731.Google Scholar
  106. 106.
    Hillmer, P. and Gest, H. 1977b. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J. Bacteriol. 129,732-739.Google Scholar
  107. 107.
    Hirasawa, M., Boyer, J.M., Gray, K.A., Davis, D.J. and Knaff, D. 1987. The interaction of ferredoxin-linked sulfite reductase with ferredoxin. FEBS Lett 221, 343-348.Google Scholar
  108. 108.
    Hirasawa, M., Droux, M., Gray, K.A., Boyer, J.M., Davis, D.J., Buchanan, B.B. and Knaff, D.B. 1988. Ferredoxin-thioredoxin reductase: properties of its complex with ferredoxin. Biochim. Biophys. Acta 935, 1-8.Google Scholar
  109. 109.
    Hoffman, D., Thauer, R. and Trebst, A. 1977. Photosynthetic hydrogen evolution by spinach chloroplasts coupled to a Clostridiumhydrogenase. Z. Naturforsch 32c, 257-262.Google Scholar
  110. 110.
    Horton, P., Ruban, A.V., Rees, D., Pascal, A.A., Noctor, G. and Young, A.J. 1991. Control of the light-harvesting function of chloropolast membranes by aggregation of the LhcII chlorophyll protein complex. FEBS Lett. 292, 1-4.Google Scholar
  111. 111.
    Houchins, J. P., and Burris, R. H. 1981. Physiological reactions of the reversible hydrogenase from Anabaena7120.Pl. Physiol. 68, 717-721.Google Scholar
  112. 112.
    Houchins, J. P. 1984. The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim. Biophys. Acta. 768,227-255.Google Scholar
  113. 113.
    Howard, D.L., Tinoco, A.D., Brudvig, G.W., Vrettos, J.S., Allen, B.C. 2005. Catalytic oxygen evolution by a bioinorganic model of the photosytem II core complexes. J. Chem. Edu. 82, 791-794.Google Scholar
  114. 114.
    Huang, P., Hogblom, J., Anderlund, M.F., Sun, L., Magnuson, A. and Styring, S. 2004, Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis. J. Inorg. Biochem. 98, 733-745.Google Scholar
  115. 115.
    Hube, M., Blokesch, M., and Böck, A. 2002. Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J. Bacteriol. 184,3879- 3885.Google Scholar
  116. 116.
    Ike, A. Saimura, C., Hirata, K., and Miyamoto, K. 1996. Environmentally friendly production of H2 incorporating microalgal CO2 fixation. J. Marine Biotech. 4,47-51.Google Scholar
  117. 117.
    Imahori, H. and Sakata, Y. 1999. Fullerenes as novel acceptors in photosynthetic electron transfer. Eur. J. Org. Chem 1999, 2445-2457.Google Scholar
  118. 118.
    Imhoff, J. F. 1995. Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. p. 1-15. In Anoxygenic Photosynthetic Bacteria. Blakenship, R. E., Madigan, M. T., and Bauer, C. E. (eds). Kluwer Academic Publishers, The Netherlands.Google Scholar
  119. 119.
    Jacobi, A., Rossmann, R., and Böck, A. 1992. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch. Microbiol. 158,444-451.Google Scholar
  120. 120.
    Jacquot, J.P., Stein, M., Suzuki, A., Liottet, S., Sandoz, G. and Miginiac-Maslow, M. 1997. Residue Glu-91 of Chlamydomonas reinhardtiiferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Lett. 400, 293-296.Google Scholar
  121. 121.
    Kanazawa, A. and Kramer, D.M. 2002. In vivomodulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl. Acad. Sci. USA 99, 12789-12794.Google Scholar
  122. 122.
    Karube, I., Matsunaga, T., Otsuka, T., Kayano, H. and Suzuki, S. 1981. Hydrogen evolution by co-immobilized chloroplasts and Clostridium butyricum. Biochim. Biophys. Acta 637, 490-495.Google Scholar
  123. 123.
    Kemner, J., and Zeikus, J. G. 1994. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeriMS. Arch. Microbiol. 161, 47-54.Google Scholar
  124. 124.
    Kentemich, T., Danneberg, G., Hundeshagen, B., and Bothe, H. 1988. Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol. Lett. 51,19-24.Google Scholar
  125. 125.
    Kim, J.P., Kang, C.D., Sim, S.J., Kim, M.S., Park T.H., Lee, D., Kim, D., Kim, J.H., Lee, Y.K. and Pak, D. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtiiUTEX 90. J. Microbiol. Biotechnol. 15, 131-135.Google Scholar
  126. 126.
    King, P.W., Posewitz, M.C., Ghirardi, M. L., and Seibert M. 2006. Functional studies of [FeFe]-hydrogenase maturation in an Escherichia colibiosynthetic system, J. Bacteriol. 288,2163-2172 .Google Scholar
  127. 127.
    Klibanov, A.M., Kaplan, N.O. and Kamen, M.D. 1978. A rationale for stabilization of oxygen-labile enzymes: application to a clostridial hydrogenase. Proc. Natl. Acad. Sci. USA 75, 3640-3643.Google Scholar
  128. 128.
    Knaff, D. B. 1996. Ferredoxin and ferredoxin-dependent enzymes. In: Oxygenic Photosynthesis: The Light Reactions (D.R. Ort and C.F. Yocum, eds.), Kluwer Academic Publishers, pp.333-361.Google Scholar
  129. 129.
    Koku, H., Eroglu, I., Gunduz, U. Yucel, M., and Turker, L. 2002. Aspect of the metabolism of hydrogen production by Rhodobacter sphaeroides. Intl. J. Hydrogen Energy 27,1315- 1329.Google Scholar
  130. 130.
    Kosourov, S., Tsygankov, A., Seibert, M. and Ghirardi, M.L. 2002. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii– Effects of culture parameters. Biotechnol. Bioeng. 78, 731-740.Google Scholar
  131. 131.
    Kosourov, S, M Seibert and ML Ghirardi.2003. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtiicultures. Plant Cell Physiol. 44,146-155.Google Scholar
  132. 132.
    Kramer, D.M., Avenson, T.J. and Edwards, G.E. 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 9, 349-357.Google Scholar
  133. 133.
    Kurkin, S., George, S. J., Thorneley, R. N. F., and Albracht, S. P. J. 2004. Hydrogeninduced activation of the [NiFe]-hydrogenase from Allochromatium vinosumas studied by stopped-flow infrared spectroscopy. Biochem. 43,6820-6831.Google Scholar
  134. 134.
    Kunkell, D.D. 1982. Thylakoid centers: structures associated with cyanobacterial photosynthetic membrane system. Arch. Microbiol. 133,97-99.Google Scholar
  135. 135.
    Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D. A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst, C., Torres, J.L. T., Peres, C., Harrison, F., Gibson, J., and Harwood, C. S. 2004. ComPhotobiological Methods of Renewable Hydrogen Production 263 plete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol. 22,55-61.Google Scholar
  136. 136.
    Laurinavichene, T.V., Tolstygina, I.V., Galiulina, R.R., Ghirardi, M.L., Seibert, M. and Tsygankov, A. 2002. Different methods to deprive Chlamydomonas reinhardtiicultures of sulfur for subsequent hydrogen photoproduction. Internat’l. J. Hydrogen Energy 27, 1245- 1249.Google Scholar
  137. 137.
    Laurinavichene, T., Tolstyginina, I. and Tsygankov, A. 2004. The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 114, 143-151.Google Scholar
  138. 138.
    Laurinavichene, T.V., Fedorov.A.S., Ghirardi, M.L., Seibert, M., and Tsygankov, A.A. 2006. Demonstration of sustained hydrogen photoproduction by immobilized, sulfurdeprived Chlamydomonas reinhardtiicells. Internat’l. J. Hydrogen Energy 31,659-667.Google Scholar
  139. 139.
    Lee, C. M., Chen, P. C., Wang, C. C., and Tung, Y. C. 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Intl. J. Hydrogen Energy 27,1309-1313.Google Scholar
  140. 140.
    Lee, J.W. and Greenbaum, E. 2003. A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl. Biochem. Bioeng. 105-108, 303-313.Google Scholar
  141. 141.
    Lehman, L. J., and Roberts, G. P. 1991. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol. 173,5705-5711.Google Scholar
  142. 142.
    Levin, D., Pitt, L. and Love, M. 2004. Biohydrogen production: prospects and limitations to practical application. Internat’l. J. Hydrogen Energy 29, 173-185.Google Scholar
  143. 143.
    Li, H. and Rauschfuss, B. 2002. Iron carbonyl sulfides, formaldehyde, and amines condense to given the proposed azadithiolate cofactor of the Fe-only hydrogenaes. J. Am. Chem. Soc. 124, 726-727.Google Scholar
  144. 144.
    Liu, H., Grot, S., and Logan, B. E. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39, 4317-4320.Google Scholar
  145. 145.
    Liu, X., Ibrahim, S.K., Tard, C., and Pickett, C.J. 2005. Iron-only hydrogenase: Synthetic, structural, and reactivity studies of model compounds. Coord. Chem. Rev. 249, 1641- 1652.Google Scholar
  146. 146.
    Lutz, S., Jacobi, A., Schlensog, V., Böhm, R. Sawers, G., Böck, A. 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol. Microbiol. 5,123-135.Google Scholar
  147. 147.
    Madigan, M., Cox, S. S., and Stegeman, R. A. 1984. Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J. Bacteriol. 157,73-78.Google Scholar
  148. 148.
    Maeda, I., Hikawa, H., Miyashiro, M., Yagi, K., Miure, Y., Miyasaka, H., Akano, T., Kiyohara, M., Matsumoto, H., and Ikuta, Y, 1994. Enhancement of starch degradation by CO2 in a marine green alga, Chlamydomonassp. MGA161. J. Ferment. Bioeng. 78, 383- 385.Google Scholar
  149. 149.
    Maeda, I., Chowdhury, W.Q., Idehara, K., Yagi, K., Mizoguchi, T., Akano, T., Miyasaka, H. Furutani, T., Ikuta, Y., Shioji, N., and Miura, Y. 1998. Improvement of Substrate Conversion to Molecular Hydrogen by Three Stage Cultivation of a Photosynthetic Bacterium, Rhodovulum sulfidophilum. Appl. Biochem. Biotechnol. 70-72, 301-310.Google Scholar
  150. 150.
    Magalon, A., and Böck, A. 2000a. Dissection of the maturation reaction of the [NiFe] hydrogenase 3 from Escherichia colitaking place after nickel incorporation. FEBS Lett. 473,254-258.Google Scholar
  151. 151.
    Maier, T., Lottspeich, F., and Böck, A. 1995. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur. J. Biochem. 230,133-138.Google Scholar
  152. 152.
    Maness, P. C., Smolinski, S., Dillon, A. C., Heben, M. J., and Weaver, P. F. 2002. Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Appl. Environ. Microbiol. 68,2633-2636.Google Scholar
  153. 153.
    Masters, R. A., and Madigan, M. 1983. Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureusand Rhodospirillum tenue. J. Bacteriol. 155,222-227.Google Scholar
  154. 154.
    Masukawa, H., Mochimaru, M., and Sakurai, H. 2002a. Disruption of uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaenasp. 7210.Appl. Microbiol. Biotechnol. 58,618-624.Google Scholar
  155. 155.
    Masukawa, H., Mochimaru, M., and Sakurai, H. 2002b. Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Internat’l. J. Hydrogen Energy 27,1471-1474.Google Scholar
  156. 156.
    Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S. M., and Smith, B. E. 1999. New insights into structure-function relationships in nitrogenase: a 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniaMoFe-protein . J. Mol. Biol. 292, 871- 891.Google Scholar
  157. 157.
    McTavish, H., Sayavedra-Soto, L. A., and Arp. D. 1996. Comparison of isotope exchange, H2 evolution, and H2 oxidation activities of Azotobacter vinelandiihydrogenase. Biochim. Biophys. Acta 1294, 183-190.Google Scholar
  158. 158.
    Melis, A., Niedhardt, J., Benemann, J.R. 1999. Dunaliella salina(Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J. Appl. Phycol. 10, 515-525.Google Scholar
  159. 159.
    Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L. and Seibert, M. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127-135.Google Scholar
  160. 160.
    Melis, A. and Happe, T. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748.Google Scholar
  161. 161.
    Melis, A. 2002. Green alga hydrogen production: progress, challenges and prospects. Internat’l. J. Hydrogen Energy 27, 1217-1228.Google Scholar
  162. 162.
    Melis, A., Seibert, M. and Happe, T. 2004. Genomics of green algal hydrogen research. Photosynth Res. 82, 277-288.Google Scholar
  163. 163.
    Meyer, T.J. 1989. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163-170.Google Scholar
  164. 164.
    Miura, Y., Yagi, I., Shoga, M., and Miyamoto, K. 1982. Hydrogen production by a green alga, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechno. Bioeng. 24, 1555-1563.Google Scholar
  165. 165.
    Misra, H. S., and Tuli, R. 2000. Differential expression of photosynthesis and N2-fixation genes in the cyanobacterium Plectonema boryanum. Plant Physiol. 468,731-736.Google Scholar
  166. 166.
    Miyake, J., Mao, X. Y., and Kawamura, S. 1984. Photoproduction of hydrogen by a coculture of a photosynthetic bacterium and Clostridium butyricum. J. Ferment. Technol. 62,531-535.Google Scholar
  167. 167.
    Miyake, J., Miyake, M., and Asada, Y. 1999. Biotechnological hydrogen production: research for efficient light energy conversion. J. Biotechnol. 70,89-101.Google Scholar
  168. 168.
    Miyamoto, K., Hallenbeck, P.C. and Benemann, J.R. 1979. Solar energy conversion by nitrogen-limited cultures of Anabaena cylindrica. J. Ferment. Technol. 57, 287-293.Google Scholar
  169. 169.
    Montet, Y., Amara, P., Volbeda, A., Vernede, X., Hatchikian, E.C., Field, M.J., Frey, M. and Fontecilla-Camps, J.C. 1997. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat. Struct. Biol. 4, 523-526.Google Scholar
  170. 170.
    Moore, T.A., Moore, A.L. and Gust, D. 2002. The design and synthesis of artificial photosynthetic antennas, reaction centres and membranes. Phil. Trans. R. soc. Lond. B 357, 1481-1498.Google Scholar
  171. 171.
    Müller, P, Li, X.P. and Niyogi, K.K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125,1558-1566.Google Scholar
  172. 172.
    Murry, M.A., and Wolk, C.P. 1989. Evidences that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch. Microbiol. 151, 469-474.Google Scholar
  173. 173.
    Mus, F., Cournac, L., Cardettini, V., Caruana, A. and Peltier, G. 2005. Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1708, 322-332.Google Scholar
  174. 174.
    Nakajima, Y. and Ueda, T. 1997. Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J. Appl. Phycol. 9, 503-510.Google Scholar
  175. 175.
    Nakajima, Y. and Ueda, T. 1999. Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J. Appl. Phycol. 11, 195-201.Google Scholar
  176. 176.
    Nakajima, Y. and Ueda, T. 2000. The improvement of marine microalgal productivity by reducing the light-harvesting pigment. J. Appl. Phycol. 12, 285-290.Google Scholar
  177. 177.
    Nakajima, Y., Tsuzuki, M., and Ueda, R. 2001. Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J. App. Phycol. 13, 95-101.Google Scholar
  178. 178.
    Nash, D., Takahashi, M. and Asada, K. 1984. Dark anaerobic inactivation of photosynthetic oxygen evolution by Chlamydomonas reinhardtii. Plant Cell Physiol. 25, 531-539.Google Scholar
  179. 179.
    National Research Council. 2004. The hydrogen economy: opportunities, costs, barriers, and R&D needs. The National Academies Press, Washington D.C.Google Scholar
  180. 180.
    Neale, P.J. and Melis, A. 1986. Algal photosynthetic membrane complexes and the photosynthesis- irradiance curve: a comparison of light-adaptation responses in Chlamydomonas reinhardtii(Chlorophyta). J. Phycol. 22, 531-538.Google Scholar
  181. 181.
    Nicolet Y., Piras, C., Legrand, P., Hatchikian, E.C. and Fontecilla-Camps, J.C. 1999. Desulfovibrio desulfuricansiron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13-23.Google Scholar
  182. 182.
    Nicolet, Y., deLacey, A.L., Vernede,, X., Fernandez, V.M., Hatchikian, E.C. and Fontecilla- Camps, J.C. 2001. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596-1601.Google Scholar
  183. 183.
    Niyogi, K.K. 1999. Photoprotection revisited: genetics and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333-359.Google Scholar
  184. 184.
    Nugent, J.H.A. and Evans, M.C.S. 2004. Structure of biological solar energy converters – further revelations. Trends Plant Sci. 9, 368-370.Google Scholar
  185. 185.
    Odom, J. M., and Peck, Jr., H. D. 1984. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Ann. Rev. Microbiol. 38, 551-592.Google Scholar
  186. 186.
    Ohkawa, H., Sonoda, M., Shibata, M., and Ogawa, T. 2001. Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystissp. Strain PCC 6803.J. Bacteriol. 183,4938-4939.Google Scholar
  187. 187.
    Osshima, H., Takakuwa, S., Katsuda, T., Okuda, M., Shirasawa, T., Azuma, M., and Kato, J. 1998. Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus. J. Ferment. Bioeng. 85, 470-474.Google Scholar
  188. 188.
    Ormerod, J. G., Ormerod, K. S., and Gest. H. 1961. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch. Biochem. Biophys. 94,449-463.Google Scholar
  189. 189.
    Ort, D. and Yocum, C.F. 1996. Oxygenic Photosynthesis: the Light Reactions. Kluwer Academic Publishers, London.Google Scholar
  190. 190.
    Packer, L. and Cullingford, W. 1977. Stoichiometry of H2 production by an in vitro chloroplast, ferredoxin, hydrogenase reconstituted system. Z. Naturforsch. 33c, 113-115.Google Scholar
  191. 191.
    Paschos, A., Bauer, A., Zimmermann, A., Zehelein, E. and Böck, A. 2002. HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J. Biol. Chem. 277,49945-49951.Google Scholar
  192. 192.
    Paschos, A., Glass, R. S., Böck, A. 2001. Carbamoylphosphate requirement for synthesis of the active center of [NiFe]-hydrogenases. FEBS Lett. 488,9-12.Google Scholar
  193. 193.
    Pfennig, N. 1978. General physiology and ecology of photosynthetic bacteria. p. 3-14. In The Photosynthetic Bacteria. Clayton, R. K., and Sistrom, W. R. (eds). Plenum Press, New York.Google Scholar
  194. 194.
    Pierik, A.J., Hulstein, M., Hagen, W.R. and Allbracht, S.P. 1998. A low spin iron with CN and CO as intrinsic ligands form the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 258,572-578.Google Scholar
  195. 195.
    Polle, J.E.W., Benemann, J.R., Tanaka, A. and Melis, A. 2000. Photosynthetic apparatus organization and function in wild type and a Chl b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211, 335-344.Google Scholar
  196. 196.
    Polle, J.E.W., Niyogi, K.K. and Melis, A. 2001. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green algae Chlamydomonas reinhardtii. Plant Cell Physiol. 42, 482-491.Google Scholar
  197. 197.
    Polle, J.E.W., Kanakagiri, S., Jin, E., Masuda, T. and Melis, A. 2002. Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Internat’l. J. Hydrogen Energy 27, 1257-1264.Google Scholar
  198. 198.
    Polle, J.E.W., Kanakagiri, S. and Melis, A. 2003. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtiiwith a truncated light-harvesting chlorophyll antenna size. Planta 217, 49-59.Google Scholar
  199. 199.
    Posewitz, M.C., King, P.W., Smolinski, S.L., Zhang, L., Seibert, M. and Ghirardi, M.L. 2004a. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279,25711-25720.Google Scholar
  200. 200.
    Posewitz, M.C., Smolinski, S.L, Kanakagiri, S., Melis, A., Seibert, M. and Ghirardi, M.L. 2004b. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16, 2151-2163.Google Scholar
  201. 201.
    Posewitz, M.C., King, P.W., Smolinski, S.L., Smith II, R.D., Ginley, A.R., Ghirardi, M.L. and Seibert, M. 2005. Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem. Soc. Trans. 33,102-104.Google Scholar
  202. 202.
    Prince, R.C., and Kheshgi, H.S. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit. Rev. Microbiol. 31, 19-31.Google Scholar
  203. 203.
    Qiang, H., Faiman, D., and Richmond, A. 1998. Optimal tilt angles of enclosed reactors for growing photoautotrophic microorganisms outdoors. J. Fermentation and Bioengineering 56,230-236.Google Scholar
  204. 204.
    Przybyla, A. E., Robbins, J., Menon, N., and Peck, Jr. H. D. 1992. Structural-function relationships among the nickel-containing hydrogenases. FEMS Microbiol. Rev. 88,109- 136.Google Scholar
  205. 205.
    Rachman, M.A., Furutani, Y., Nakashimada, Y., Kakizono, T., and Nishio, N. 1997. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes.J. Ferm. Bioeng. 83,358-363.Google Scholar
  206. 206.
    Radmer, R. and Kok, B. 1977. Photosynthesis: limited yields, unlimited dreams. Bioscience 29, 599-605.Google Scholar
  207. 207.
    Rakhely, G., Colbeau, A., Garin, J., Vignais, P. M., and Kovacs, K. 1998. Unusual organization of the genes coding or HydSL, the stable [NiFe]hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicinaBBS. J. Bacteriol. 180,1460-1465.Google Scholar
  208. 208.
    Rao, K.K., Gogotov, I.N. and Hall, D.O. 1978. Hydrogen evolution by chloroplasthydrogenase systems: improvements and additional observations. Biochimie 60, 291-296.Google Scholar
  209. 209.
    Rao, K.K., Hall, D.O., Vlachopoulos, N., Grätzel, M., Evans, M.C.W., and Seibert, M. 1990, Photoelectrochemical response of photosystem II particles immobilized on dyederivatized TiO2 films. J. Photochem. Photobiol. 5, 379-389.Google Scholar
  210. 210.
    Raymond, J., Siefert, J. L., Staples, C. R., and Blankenship, R. E. 2003. The natural history of nitrogen fixation. Mol. Biol. Evol. 21,541-554.Google Scholar
  211. 211.
    Reade, J. P., Dougherty, L. J., Rodgers, L. J., and Gallon, J. R. 1999. Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152. Microbiol. 145,1749-1758.Google Scholar
  212. 212.
    Reissmann, S., Hochleitner, E., Wang, H., Paschos, A., Lottspeich, F., Glass, R. S., and Böck, A. 2003. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science, 299,1067-1070.Google Scholar
  213. 213.
    Reüttinger, W., and Dismukes, G.C. 1997. Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Hem. Rev. 126, 1-24.Google Scholar
  214. 214.
    Rey, L., Fernàndez, D., Brito, B., Hernando, Y., Palacios, J. M., Imperial, J., and Ruiz- Argueso, T. 1996. The hydrogenase gene cluster of Rhizobium leguminosarumbv viciae contains an additional gene (hypX) which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickeldependent hydrogenase processing and activity. Mol. Gen. Genet. 252,237-248.Google Scholar
  215. 215.
    Roessler, P. and Lien, S. 1982. Anionic modulation of the catalytic activity of hydrogenase from Chlamydomonas reinhardtii. Arch. Biochem. Biophys. 213, 37-44.Google Scholar
  216. 216.
    Roessler, P. and Lien, S,. 1984, Purification of hydrogenase from Chlamydomonas reinhardtii. Plant Physiol. 75, 705-709.Google Scholar
  217. 217.
    Rossmann, R., Sauter, M., Lottspeich, F., and Böck, A. 1994. Maturation of the large subunit (HycE) of Escherichia colihydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur. J. Biochem. 220,377-384.Google Scholar
  218. 218.
    Rubio, L. M., and Ludden, P. W. 2005. Maturation of nitrogenases: a biochemical puzzles. J. Bacteriol. 187,405-414.Google Scholar
  219. 219.
    Rybtchinski, B., Sinks, L.E., Wasielewski, M.R. 2004. Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores. J. Am. Chem. Soc. 126, 12268-12269.Google Scholar
  220. 220.
    Sakamoto, M., Kamachi, T., Okura, I., Ueno, A. and Mihara, H. 2001. Photoinduced hydrogen evolution with peptide dendrimer-multi-Zn(II)-porphyrin, viologen, and hydrogenase. Biopolymers 59, 103-109.Google Scholar
  221. 221.
    Samson, G., Herbert, S.K., Fork, D.C. and Laudenbach, D.E. 1994. Acclimation of the photosynthetic apparatus to growth irradiance in the mutant strain of Synechococcuslacking iron superoxide dismutase. Plant Physiol. 105, 287-294.Google Scholar
  222. 222.
    Sasikala, K., Ramana, C. V., Rao, P. R., and Subrahmanyam, M. 1990. Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroidesO.U. 001. Internat’l. J. Hydrogen Energy 15,795-797.Google Scholar
  223. 223.
    Scherer, S., Almon, H. Böger, P. 1988. Interactions of photosynthesis, respiration, and nitrogen fixation in cyanobacteria. Photosyn. Res. 15,95-114.Google Scholar
  224. 224.
    Schick, H. J. 1971. Substrate and light dependent fixation of molecular nitrogen in Rhodospirillum rubrum. Arch. Microbiol. 75,89-101.Google Scholar
  225. 225.
    Schmitz, O., Boison, G., Hilscher, R., Hundeshagen, B., Zimmer, w., Lottspeich, F., and Bothe H. 1995. Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur. J. Biochem. 233,266-276.Google Scholar
  226. 226.
    Schmitz, O., and Bothe, H. 1996. NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans. 1996. FEMS Microbiol. Lett. 135, 97-101.Google Scholar
  227. 227.
    Schmitz, O., Boison, G., Salzmann, H., Bothe, H., Schutz, K., Wang, S. H., and Happe, T. 2002. HoxE – a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim. Biophys. Acta 1554,66-74.Google Scholar
  228. 228.
    Schutz, K., Happe, T., Olga, T., Lindblad, P., Leitão, E., Oliveira, P., and Tamagnini, P. 2004. Cyanobacterial H2 production – a comparative analysis. Planta 218,P. 350-359.Google Scholar
  229. 229.
    Seibert M., Flynn, T., Benson, D., Tracy, E. and Ghirardi, M. 1998. Development of selection/screening procedures for rapid identification of H2-producing algal mutants with increased O2-tolerance, in Biohydrogen, O. R. Zaborsky, ed., Plenum Publishing Corporation, New York, N.Y., pp. 227-234.Google Scholar
  230. 230.
    Seibert, M., Flynn, T., and Benson, D. 2001a. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor, U.S. Patent # 6,277,589.Google Scholar
  231. 231.
    Seibert, M., Flynn, T. and Ghirardi, M.L. 2001b. Strategies for improving oxygen tolerance of algal hydrogen production, in BioHydrogen II,J. Miyake, T. Matsunaga and A. San Pietro eds., Pergamon Press, Amsterdam, p. 65-76.Google Scholar
  232. 232.
    Seibert, M., Flynn, T., and Benson, D. 2002. System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor, U.S. Patent # 6,448,068.Google Scholar
  233. 233.
    Serebriakova, L., Zorin, N. A., and Lindblad, P. 1994. Reversible hydrogenase in Anabaena variabilisATCC 29413. Arch. Microbiol., 161,140-144.Google Scholar
  234. 234.
    Shah, V. K., and Brill, W. J. 1977. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 74,3249-3253.Google Scholar
  235. 235.
    Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. and Miller, N.E. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097-1106.Google Scholar
  236. 236.
    Steinberg-Yfrach, G., Rigaud, J.L., Durantini, E.N., Moore, A.L., Gust, D. and Moore, T.A., 2002. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392, 479-482.Google Scholar
  237. 237.
    Stevens, S. E., and Nierzwicki-Bauer, S. 1991. The Cyanobacteria. In: Stolz JF (ed) Structure of phototrophic prokaryotes, pp15-47. CRC Press, Inc. Baco Raton.Google Scholar
  238. 238.
    Sun, L., Raymond, M.K., Magnuson, A., LeGourrièrec, D., Tamm, M., Abrahamsson, M., Kenèz, P.H., Mårtensson, J., Stenhagen, G., Hammarström, L., Styring, S., Åkermark, B. 2000. Towards an artificial model for photosystem II: A manganese(II,II) dimer covalently linked to ruthenium(II) tris-bipyridine via a tyrosine derivative J. Inorg. Biochem. 78, 15-22.Google Scholar
  239. 239.
    Sun, L., Åkermark, D., and Ott, S. 2005. Iron hydrogenase activity site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev. 249, 1653-1663.Google Scholar
  240. 240.
    Tamagnini, P., Troshina, O., Oxelfelt, F., Salema, R., and Lindblad, P. 1997. Hydrogenase in Nostocsp. strain PCC 73102, a strain lacking a bidirectional enzme. Appl. Enviorn. Microbiol. 63,1801-1807.Google Scholar
  241. 241.
    Tamagnini, P., Costa, J. L., Almeida, L., Oliveira, M. J., Salema, R., and Linblad, P. 2000. Diversity of cyanobacterial hydrogenase, a molecular biology approach. Curr. Microbiol. 40,356-361.Google Scholar
  242. 242.
    Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wunschiers, R., and Lindblad, P. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66,1-20.Google Scholar
  243. 243.
    Tard, C., Liu, X., Ibrahim, S.K., Bruschi, M., de Gioia, L., Davies, S.C., Yang, X., Wang, L.S., Sawers, G. and Pickett, C.J. 2005. Synthesis of the H-cluster framework of irononly hydrogenase. Nature 433, 610-613.Google Scholar
  244. 244.
    Thiel, T. 1993. Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J. Bacteriol. 175,6276-6286.Google Scholar
  245. 245.
    Thiel, T., and Pratte, B. 2001. Effect of heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilisATCC 29413.J. Bacteriol. 183,280-286.Google Scholar
  246. 246.
    Torzillo, G., Carlozzi, P., Pushparaj, B., Montaini, E., and Materassi, R. 1993. A twoplane tubular photobioreactor for outdoor culture of Spirulina. Biotechnology and Bioengineering, 42, 891-898.Google Scholar
  247. 247.
    Trebitsh, T. and Danon, A. 2001. Translation of chloroplast psbAmRNA is regulated by signals initiated by both photosystems II and I. Proc. Natl. Acad. Scie. 98, 12289-12294.Google Scholar
  248. 248.
    Truper, H. G., and Pfennig, N. 1974. Taxonomy of the Rhodospirillales. P. 19-26. In The Photosynthetic Bacteria. Clayton, R. K., and Sistrom, W. R. (eds). Plenum Press, New York.Google Scholar
  249. 249.
    Tsygankov, A.A., Borodin, V.B., Rao, K.K. and Hall, D.O. 1999. H2 photoproduction by batch culture of Anabaena variabilisATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnol. Bioeng. 64, 709-715.Google Scholar
  250. 250.
    Tsygankov, A., Kosourov, S., Seibert, M. and Ghirardi, M.L. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. J. Intern. Hydrogen Energy 27, 1239-1244.Google Scholar
  251. 251.
    Van der Linden, E., Faber, B. W., Bleijlevens, B., Burgdorf, T., Bernhard, M., friedrich, B., and Albracht, S. P. J. 2004. Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. Eur. J. Biochem. 271,801-808.Google Scholar
  252. 252.
    Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L. 2004. Environment Genome Shotgun Sequencing of the Sargasso Sea. Science 304, 66-74.Google Scholar
  253. 253.
    Verhagen, M.F., O’Rourke, T. and Adams, M.W. 1999. The hyperthermophilic bacterium, Thermatoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim. Biophys. Acta 1412, 212-219.Google Scholar
  254. 254.
    Vignais, P. M., Dimon, B., Zorin, N. A., Tomiyama, M., and Colbeau, A. 2000. Characterization of the hydrogen-deteurium exchange activities of the energy-transduing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus. J. Bacteriol. 182,5997-6004.Google Scholar
  255. 255.
    Vignais, P.M., Billoud, B. and Meyer, J. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455-501.Google Scholar
  256. 256.
    Vignais, P. M., and Colbeau A. 2004. Molecular biology of microbial hydrogenase. Curr. Issues Mol. Bio. 6,159-188.Google Scholar
  257. 257.
    Volbeda, A., and Fontecilla-Camps, J. 2003. The active site and catalytic mechanisms of NiFe hydrogenases. Dalton Trans. 6,4030-4038.Google Scholar
  258. 258.
    Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla- Camps, J. C. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373,580-587.Google Scholar
  259. 259.
    Volbeda, A., Montet, Y., Vernéde, X., Hatchikian, E. C., and Fontecilla-Camps, J. C. 2002. High-resolution crystallographic analysis of Desulfovibrio fructosovorans[NiFe] hydrogenase. Intl. J. Hydrogen Energy. 27,1449-1461.Google Scholar
  260. 260.
    Voncken, F.G.J., Boxma, B., van Hoek, A.HA.M., Akhmanova, A.S., Vogels, G.D., Huynen, M., Veenhuis, M., and Hackstein, J.H.P. 2002. A hydrogenosomal [Fe]- hydrogenase from the anaerobic chytrid Neocallimastixsp. L2. Gene 284, 103-112.Google Scholar
  261. 261.
    Wang, R., Healey, F.P. and Myers, J. 1971. Amperometric measurement of hydrogen evolution in Chlamydomonas. Plant Physiol. 48, 108-110.Google Scholar
  262. 262.
    Wasielewski, M.R. 1992. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435-461.Google Scholar
  263. 263.
    Weaver, P. F., Lien, S., and Seibert, M. 1980. Photobiological production of hydrogen. Solar Energy 24,3-45.Google Scholar
  264. 264.
    Wenk, S.O., qian, D.J., Wakayama, T., Nakamura, C., Zorin, N., Rögner, M. and Miyake, J. 2002. Biomolecular device for photoinduced hydrogen production. Int. J. Hydrogen Energy 27, 1489-1493.Google Scholar
  265. 265.
    Weissman, J.C. and Benemann, J.R. 1977. Hydrogen production by nitrogen-fixing cultures of Anabaena cylindrica. Appl. Environ. Microbiol. 33, 123-131.Google Scholar
  266. 266.
    Winkler, M., Heil, B., Hei, B., and Happe, T. 2002. Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim. Biophys. Acta 1576, 330-334.Google Scholar
  267. 267.
    Winkler, M., Maeurer, C., Hemschemeier, A. and Happe, T. 2004. The isolation of green algal strains with outstanding H2-productivity, in: Biohydrogen III, J. Miyake, Y. Igarashi and M. Roegner, eds., Elsevier Science, Oxford, pp. 103-116.Google Scholar
  268. 268.
    Wolk, C. P. 1996. Heterocyst formation. Annu. Rev. Genet. 30,59-78.Google Scholar
  269. 269.
    Wünschiers, R., Stangier, K., Senger, H. and Schulz, R. 2001. Molecular evidence for an [Fe]-hydrogenase in the green alga Scenedesmus obliquus. Current Microbiol. 42, 353- 360.Google Scholar
  270. 270.
    Wykoff, D.D., Davies, J.P., Melis, A. and Grossman, A.R. 1998. The regulation of photosynthetic electron-transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 177, 129-139.Google Scholar
  271. 271.
    Yagi, T., Motoyuki, T., and Inokuchi, H. 1973. Kinetic studies of hydrogenases. J. Biochem. 73,1069-1081.Google Scholar
  272. 272.
    Yokoi, H., Mori, S., Hirose, J., Hayashi, S., and Takasaki, Y. 1998. Hydrogen production from starch by a mixed culture of Clostridium butyricumand Rhodobactersp. M-19. Biotechnol. Lett. 20,890-895.Google Scholar
  273. 273.
    Zak, E., Norling, B., Maitra, R., Huang, F., Anderson, B., and Pakrasi, H. B. 2001. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc. Nalt. Acad. Sci. USA. 23,13443-13448.Google Scholar
  274. 274.
    Zhang, L. and Melis, A. 2002. Probing green algal hydrogen production. Phil. Trans. R. Soc. Lond. Biol. Sci. 357, 1499-1509.Google Scholar
  275. 275.
    Zhang, L., Happe, T. and Melis, A. 2002. Biochemical and morphological characterization of sulfur deprived and H2-producing Chlamydomonas reinhardtii(green algae). Planta 214, 552-561.Google Scholar
  276. 276.
    Zito, F., Finazzi, G., Delosme, R., Nitschke, W., Picot,D., and Wollman, F.A. 1999. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO $J$. 18, 2961-2969.Google Scholar
  277. 277.
    Zürrer, H. and Bachofen, R. 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrumin continuous culture. Biomass 2,165- 238.Google Scholar
  278. 278.
    M. C. Posewitz, personal communication.Google Scholar
  279. 279.
    F. P. Healey, 1970. The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant. Physiol. 45, 153-159Google Scholar
  280. 280.
    R. P. Gfeller and M. Gibbs. 1985. Fermentative metabolism of Chlamydomonas reinhardtii. II. Role of plastoquinone, Plant Physiol. 77,509-511. Google Scholar
  281. 281.
    M. W. W.Adams. 1990. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1020,115-143.Google Scholar
  282. 282.
    Curtis, C.J., Miedaner, A., Ciancanelli, R., Ellis, W.W., Noll, B.C., Rakowski DuBois, M., and DuBois, D.L. 2003.[Ni(Et2PCH2NMeCH2PEt2)2]2+ as a functional model for hydrogenases. Inorg. Chem. 42, 216-227.Google Scholar
  283. 283.
    .Wilson, A.D., Newell, R.H., McNevin, M.J., Muckerman, J.T., Rakowski DuBois, M., and DuBois, D.L. 2006. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J. Am. Chem. Soc. 128, 358-366.Google Scholar
  284. 284.
    Abdel-Basset, R. and Bader, K.R. 1998. Physiological analyses of the hydrogen gas exchange in cyanobacteria. Photochem. Photobiol. 43, 146-151.Google Scholar
  285. 285.
    Kondo, T., Arakawa, M., Hirai, T., Wakayama, T., Hara, M. and Miyake, J. 2002. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J. Bioscie. Bioeng. 93, 145-150.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maria L. Ghirardi
    • 1
  • Pin Ching Maness
    • 1
  • Michael Seibert
    • 1
  1. 1.National Renewable Energy Laboratory (NREL)Golden

Personalised recommendations