Thermochemical and Thermal/Photo Hybrid Solar Water Splitting

  • Stuart Licht


Water Splitting Water Electrolysis Solar Energy Conversion Thermal Dissociation Solar Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study, Int. J. Hydrogen Energy, 23 89-98 (1998).CrossRefGoogle Scholar
  2. 2.
    A. Steinfeld, Solar thermochemical production of hydrogen-a review, Solar Energy, 78 603–615 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Licht, Solar water splitting to generate hydrogen fuel–A photothermal electrochemical analysis, Int. J. Hydrogen Energy, 30 459–470 (2005).CrossRefGoogle Scholar
  4. 4.
    J. E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrogen Energy, 26 185–190 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsh, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for sefficient solar water splitting, Int. J. Hydrogen Energy, 26 653–659 (2001).CrossRefGoogle Scholar
  6. 6.
    K. Agabossu, R. Chahine, J. Hamelin, F. Laurencelle, A. Anouar, J.-M. St-Arnaud, and T. K. Bose, Renewable energy systems based on hydrogen for remote applications, J. of Power Sources 96 168–172 (2001).CrossRefGoogle Scholar
  7. 7.
    T. Ohmori, H. Go, N. Yamaguchi, A. Nakayama, H. Mametisuka, and E. Suzuki, Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells, Int. J. of Hydrogen Energy 26 661–664 (2001).CrossRefGoogle Scholar
  8. 8.
    T. Tani, N. Sekiguchi, M. Sakai, and D. Otha, Optimization of solar hydrogen systems based on hydrogen production cost, Solar Energy 68 143–149 (2000).CrossRefGoogle Scholar
  9. 9.
    P. Hollmuller, J.-M. Jouibert, B. Lachal, and K. Yvon, Evaluation of a 5-kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland, Int. J. of Hydrogen Energy 25 97–109 (2000).CrossRefGoogle Scholar
  10. 10.
    S. Schulien, G. Sandstede, and H. W. Hahn, Hydrogen and carbon dioxide as raw materials for ecological energy – technology, Int. J. of Hydrogen Energy 24 299–303 (1999).CrossRefGoogle Scholar
  11. 11.
    C. Meurer, H. Barthels, W. A. Brocke, B. Emonts, and H. G. Groehn, Phoebus – and autonomous supply system with renewable energy: six years of operational experience and advanced concepts, Solar Energy 67 131–138 (1999).CrossRefGoogle Scholar
  12. 12.
    A. Szyszka, Ten year of solar hydrogen demonstration project at Neunburg vorm Wald, Germany, Int. J. of Hydrogen Energy 23 849–860 (1998).CrossRefGoogle Scholar
  13. 13.
    P. A. Lehman, C. E. Chamberlin, G. Pauletto, and M. A. Rocheleau, Operating experience with photovoltaic-hydrogen energy system, Int. J. of Hydrogen Energy 22 465–470 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Galli and M. Stefanoni, Development of a solar-hydrogen cycle in Italy, Int. J. of Hydrogen Energy 22 453–458 (1997).CrossRefGoogle Scholar
  15. 15.
    J. W. Hollenberg, E. N. Chen, K. Lakeram, and D. Modroukas, Development of a photovoltaic energy conversion system with hydrogen energy storage, Int. J. of Hydrogen Energy 20 239–243 (1995).CrossRefGoogle Scholar
  16. 16.
    E. Bilgen, Solar hydrogen from photovoltaic-electrolyzer systems, Energy Conversion & Management 42 1047–1057 (2001).Google Scholar
  17. 17.
    M. P. Rzayeva, O. M. Salamov, and M. K. Kerimov, Modeling to get hydrogen and oxygen by solar water electroclysis, Int. J. of Hydrogen Energy, 26 195–201 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys., Chem. B, 105 6281–6294 (2001).CrossRefGoogle Scholar
  19. 19.
    Semiconductor Electrodes and Photoelectrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, 2002.Google Scholar
  20. 20.
    A. Fujishima and K. Honda, Nature 37 238 (1972).Google Scholar
  21. 21.
    A. Heller, E. Asharon-Shalom, and W. A. Bonner, B. Miller, Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst, J. Am. Chem. Soc. 104 6942–6948 (1982).CrossRefGoogle Scholar
  22. 22.
    O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via waer splitting, Science, 280 425–427 (1998).CrossRefGoogle Scholar
  23. 23.
    S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, Efficient Solar Water Splitting, Conversion, J. Phys., Chem., B, 104 8920–8924 (2000).CrossRefGoogle Scholar
  24. 24.
    H. Ohya, M. Yatabe, M. Aihara, Y. Negishi, and T. Takeuchi, Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy, Int. J. Hydrogen Energy, 27 369–376 (2002).CrossRefGoogle Scholar
  25. 25.
    E. A. Fletcher and R. L. Moen, Hydrogen and oxygen from water, Science, 197 105 (1977).CrossRefGoogle Scholar
  26. 26.
    J. E. Noring, R. B. Diver and E. A. Fletcher, Hydrogen and oxygen water V. The ROC system, Energy, 6 109 (1981).CrossRefGoogle Scholar
  27. 27.
    R. B. Diver, S. Pederson, T. Kappauf, and E. A. Fletcher, Hydrogen and oxygen from water: VI. Quenching the effluent from a solar furnace, Energy 8 947 (1983).CrossRefGoogle Scholar
  28. 28.
    G. Olalde, D. Gauthier, and A. Vialaron, Film boiling around a zirconia target. Application to water thermolysis, Adv. Ceramics, 24 879–883 (1988).Google Scholar
  29. 29.
    J. Lede, F. Lapigque, J. Villermaux, B. Cales, A. Ounalli, J. F. Baumard, and A. M. Anthony, Production of hydrogen by direct thermal decomposition of water: Preliminary investigations, Int. J. Hydrogen Energy, 7 939–950 (1982).CrossRefGoogle Scholar
  30. 30.
    F. Lapigque, J. Lede, L. Villermaux, A. Cales, J. Baumard, A. M. Anthony, E. Abdul Aziz, D. Peuchberty, and M. Ledoux, ?Entropie, 110 42 (1983).Google Scholar
  31. 31.
    J. Lede, J. Villermaux, R. Ouzane, M. A. Hossain, and R. Ouahes, Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface, Int. J. Hydrogen Energy, 12 3–11 (1987).CrossRefGoogle Scholar
  32. 32.
    A. Ounalli, B. Cales, K. Dembrinski, and J. F. Baumard, C. R. Acad. Sci. Paris, 292(11) 1185 (1981).Google Scholar
  33. 33.
    E. Bilgen, Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment, Int. J. Hydrogen Energy, 9 53–48 (1984).CrossRefGoogle Scholar
  34. 34.
    E. Bilgen, M. Duccarroir, M. Foex, F. Silieude, and F. Trombe, Use of solar energy for direct and two-step water decomposition cycles, Int. J. Hydrogen Energy, 2 251–257 (1977).CrossRefGoogle Scholar
  35. 35.
    S. Ihara, Feasibility of hydrogen production by direct water splitting at high temperature, Int. J. Hydrogen Energy, 3 287–296 (1978).CrossRefGoogle Scholar
  36. 36.
    S. Ihara, On the study of hydrogen production from water using solar thermal energy, Int. J. Hydrogen Energy, 5 527–534 (1980).CrossRefGoogle Scholar
  37. 37.
    A. Yogev, A. Kribus, M. Epstein and A. Kogan, Solar “Thermal Reflector” systems: A new approach for high-temperature solar plants, Int. J. Hydrogen Energy 26 239–245 (1998).CrossRefGoogle Scholar
  38. 38.
    A. Kribus, P. Doron, R. Rubin, J. Karni, R. Reuven, S. Duchan, and E. Taragan, A multistage solar receiver: the route to high temperature, Solar Energy, 67 2–11 (2000).Google Scholar
  39. 39.
    A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor, Int. J. Hydrogen Energy, 25 1043–1050 (2000).CrossRefGoogle Scholar
  40. 40.
    H. Naito and H. Arashi, Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane, Solid State Ionics, 79 366–370 (1995).CrossRefGoogle Scholar
  41. 41.
    R. P. Omorjan, R. N. Paunovic, M. N. Tekic, and M. G. Antov, Maximal extent of an isothermal reversible gas-phase reaction in single- and double-membrane reaction; direct thermal splitting of water, Int. J. Hydrogen Energy, 26 203–212 (2001).CrossRefGoogle Scholar
  42. 42.
    A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. I. Theoretical evaluation of hydrogen yield, Int. J. Hydrogen Energy, 22 481–486 (1997).Google Scholar
  43. 43.
    A. Kogan, E. Spiegler, and M. Wolfshtein, Direct solar thermal splitting of water and onsite separation of the products. III. Improvement of reactor efficiency by steam entrainment, Int. J. Hydrogen Energy, 25 739–745 (2000).CrossRefGoogle Scholar
  44. 44.
    S. Z. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29 1451–1458 (2004).CrossRefGoogle Scholar
  45. 45.
    S. Z. Baykara, Experimental solar water thermolysis, Int. J. Hydrogen Energy, 29 1459– 1469 (2004).CrossRefGoogle Scholar
  46. 46.
    N. Serpone, D. Lawless, and R. Terzian, Solar fuels: status and perspectives, Solar Energy, 49 221–234 (1992).CrossRefGoogle Scholar
  47. 47.
    J. Funk, Thermochemical hydrogen production past and present, Int. J. Hydrogen Energy, 26 185–190 (2001).CrossRefGoogle Scholar
  48. 48.
    D. OKeefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp, and K. McCorkle, Preliminary results from bench-scale testing of sulfur-iodine thermochemical watersplitting cycle, Int. J. Hydrogen Energy, 7 381–392 (1982).CrossRefGoogle Scholar
  49. 49.
    M. Sakurai, E. Bilgen, A. Tsutsumi, and K. Yoshida, Solar UT-3 thermochemical cycle for hydrogen production, Solar Energy, 57 51–58 (1996).CrossRefGoogle Scholar
  50. 50.
    T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar Energy, 19 467–475 (1977).CrossRefGoogle Scholar
  51. 51.
    A. Steinfeld, S. Sanders, and R. Palumbo, Design aspects of solar thermochemical engineering, Solar Energy, 65 43–53 (1999).CrossRefGoogle Scholar
  52. 52.
    A. Tofighi, Ph.D. Thesis, L’Institut National Polytechnique de Toulouse, France, 1982.Google Scholar
  53. 53.
    F. Sibieude, M. Ducarroir, A. Tofighi, and J. Ambriz, High-temperature experiments with a solar furnace: the decomposition of Fe3O4,Mn3O4, CdO, Int. J. Hydrogen Energy, 7 79– 88 (1982).CrossRefGoogle Scholar
  54. 54.
    R. D. Palumbo, A. Rouanet, and G. Pichelin, The solar thermal decomposition of TiO2 above 2200 K and its use in the production of Zn from ZnO, Energy - Int. J., 20 857– 868 (1995).Google Scholar
  55. 55.
    R. Palumbo, J. Lede, O. Boutin, E. Elorza Ricart, A. Steinfeld, S. Moeller, A. Weidenkaff, E. A. Fletcher, and J. Bielicki, The production of Zn from ZnO in a single step high temperature solar decomposition process, Chem. Eng. Sci., 53 2503–2518 (1998).CrossRefGoogle Scholar
  56. 56.
    M. Sturzenegger and P. Nuesch, Efficiency analysis for a manganese-oxide-based thermochemical cycle, Energy, 24 959–970 (1999).CrossRefGoogle Scholar
  57. 57.
    K. Ehrensberger, A. Frei, P. Kuhn, H. R. Oswald, and P. Hug, Comparative experimental investigations on the water-splitting reaction with iron oxide Fe1-yO and iron manganese oxides (Fe1-xMnx) 1-yO, Solid State Ionics, 78 151–160 (1995).CrossRefGoogle Scholar
  58. 58.
    Y. Tamaura, A. Steinfeld, P. Kuhn, and K. Ehrensberger, Production of solar hydrogen by a novel, 2-step, watersplitting thermochemical cycle, Energy, 20 325–330 (1995).CrossRefGoogle Scholar
  59. 59.
    Y. Tamaura, M. Kojima, Y. Sano, Y. Ueda, N. Hasegawa, and M. Tsuji, Thermodynamic evaluation of watersplitting by a cation-excessive (Ni, Mn) ferrite, Int. J. Hydrogen Energy, 23 1185–1191 (1998).CrossRefGoogle Scholar
  60. 60.
    A. Weidenkaff, A. Reller, A. Wokaun, and A. Steinfeld, Thermogravimetric analysis of the ZnO/Zn water splitting cycle, Thermochim. Acta, 359 69–75 (2000).CrossRefGoogle Scholar
  61. 61.
    A. Weidenkaff, A. Reller, F. Sibieude, A. Wokaun, and A. Steinfeld, Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace, Chem. Mater., 12 2175–2181 (2000).CrossRefGoogle Scholar
  62. 62.
    S. Moeller and R. Palumbo, Solar thermal decomposition kinetics of ZnO in the temperature range 1950–2400 K, Chem. Eng. Sci., 56 4505–4515 (2001).CrossRefGoogle Scholar
  63. 63.
    A. Weidenkaff, A. Wuillemin, A. Steinfeld, A. Wokaun, B. Eichler, and A. Reller, The direct solar thermal dissociation of ZnO: condensation and crystallization of Zn in the presence of oxygen, Solar Energy, 65 59–69 (1999).CrossRefGoogle Scholar
  64. 64.
    E. A. Fletcher, Solar thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example, Ind. Eng. Chem. Res., 38 2275–2282 (1999).CrossRefGoogle Scholar
  65. 65.
    E. A. Fletcher, F. Macdonald, and D. Kunnerth, High temperature solar electrothermal processing II. Zinc from zinc oxide, Energy, 10 1255–1272 (1985).CrossRefGoogle Scholar
  66. 66.
    D. J. Parks, K.L. Scholl, and E.A. Fletcher, A study of the use of Y2O3 doped ZrO2 membranes for solar electro-thermal and solar thermal separations, Energy, 13 121 –136 (1988).CrossRefGoogle Scholar
  67. 67.
    R. D. Palumbo and E. A. Fletcher, High temperature solar electro-thermal processing. III. Zinc from zinc oxide at 1200–1675 K using a non-consumable anode, Energy, 13 319–332 (1988).CrossRefGoogle Scholar
  68. 68.
    P. Haueter, S. Moeller, R. Palumbo, and A. Steinfeld, The production of zinc by thermal dissociation of zinc oxide - solar chemical reactor design, Solar Energy 67 161–167 (1999).CrossRefGoogle Scholar
  69. 69.
    H. Aoki, H. Kaneko, N. Hasegawa, H. Ishihara, A. Suzuki, and Y. Tamaura, The ZnFe2O4/(ZnO+Fe3O4) system for H2 production using concentrated solar energy, Solid State Ionics, 172, 113-116, 2004Google Scholar
  70. 70.
    M. Inoue, N. Hasewaga, R. Uehara, N. Gokon, H. Kaneko, and Y. Tamaura, Solar hydrogen generation with H2O/ZNO/MnFe2O4 system, Solar Energy, 76 309–315 (2004).CrossRefGoogle Scholar
  71. 71.
    C. Perkins and A. W. Weimer, Likely near-term solar-thermal water splitting technologies, Int. J. of Hydrogen Energy, 29 1587–1599 (2004).CrossRefGoogle Scholar
  72. 72.
    H. Kaneko, N. Gokon, N. Hasewaga, and Y. Tamaura, Solar thermochemcial process for hydrogen production using ferrites, Energy, 30 2171–2178 (2005).CrossRefGoogle Scholar
  73. 73.
    P. Blum, Cell for electrolysis of steam at high temperture, U.S. Patent 3, 993,653, Dec. 9, 1975.Google Scholar
  74. 74.
    D. I. Tcherev, Device for solar energy Conversion by photo-electrolytic decomposition of water, U.S. Patent 3, 925,212, Nov. 23, 1976.Google Scholar
  75. 75.
    A. J. DeBethune, T. S. Licht, and N. S. Swendemna, The temperature coefficient of Electrode Potentials, J. Electrochem. Soc., 106 618–625 (1959).Google Scholar
  76. 76.
    J. O’M. Bockris, Energy Options, Halsted Press, New York, 1980.Google Scholar
  77. 77.
    D. E. Monahan, Process and apparatus for generating hydrogen and oxygen using solar energy, U.S. Patent 4,233,127, Nov. 11, 1980.Google Scholar
  78. 78.
    L. E. Crackel, Spectral converter, U.S. Patent 4,313,425, Feb. 2, 1982.Google Scholar
  79. 79.
    C. Alkan, M. Sekerci, and S. Kung, Production of hydrogen using Fresnel lens-solar electrochemical cell, Int. J. of Hydrogen Energy, 20 17–20 (1995).CrossRefGoogle Scholar
  80. 80.
    C. W. Neefe, Passive hydrogel fuel generator, U.S. Patent 4,511,450, April 16, 1985.Google Scholar
  81. 81.
    D. E. Soule, Hybrid solar energy generating system, U.S. Patent 4,700,013, Oct. 13, 1987.Google Scholar
  82. 82.
    G. Tindell, Electrical energy production apparatus, U.S. Patent 4,841,731, June 27, 1989.Google Scholar
  83. 83.
    J. B. Lasich, Production of hydrogen from solar radiation at high efficiency, U.S. Patent 5,973,825, Oct. 26, 1999.Google Scholar
  84. 84.
    S. R. Vosen and J. O. Keller, Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies, Int. J. of Hydrogen Energy, 24 1139–1156 (1999).CrossRefGoogle Scholar
  85. 85.
    J. Padin, T. N. Veziroglu, and A. Shahin, Hybrid solar high-temperature hydrogen production system, Int. J. of Hydrogen Energy, 25 295–317 (2000).CrossRefGoogle Scholar
  86. 86.
    H. Izumi, Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength, U.S. Patent 6,057,504, May 2, 2000.Google Scholar
  87. 87.
    S. Licht, Efficient solar generation of hydrogen fuel - a fundamental analysis, Electrochemical Communications, 4 790–795 (2002).CrossRefGoogle Scholar
  88. 88.
    S. Licht, Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B, 107 4253–4260 (2002).CrossRefGoogle Scholar
  89. 89.
    S. Licht, L. Halperin, M. Kalina, M. Zidman, and N. Halperin, Electrochemical Potential Tuned Solar Water Splitting, Chemical Communications, 3006-3007 (2003).Google Scholar
  90. 90.
    S. Licht, pH measurement in conentrated alkaline solutions, Anal. Chem., 57 514–519 (1987).CrossRefGoogle Scholar
  91. 91.
    T. S. Light, T. S, Licht, A. C. Bevilacqua, and Kenneth R. Morash, Conductivity and resistivity of ultrapure water, Electrochem. Solid State Lett., 8 E16–E19 (2005)CrossRefGoogle Scholar
  92. 92.
    S. Licht, Analysis in highly concentrated solutions: Potentiometric, conductance, evanescent, densometric, and spectroscopic methodolgies, in Electroanalytical Chemistry, Vol. 20, Edited by A. Bard and I. Rubinstein, Marcel Dekker, New York, 1998, pp. 87–140.Google Scholar
  93. 93.
    M. W. Chase, J. Phys. Chem. Ref. Data 14, Monograph 9 (JANF Thermochemical Tables, 4th edition), 1998.Google Scholar
  94. 94.
    M. W. Chase, J. Phys. Chem. Ref. Data Supplement No. 1 to 14, (JANF Thermochemical Tables, 3rd edition), 1986.Google Scholar
  95. 95.
    W. Kreuter and H. Hofmann, Electrolysis: The important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy, 23 661–669 (1998).CrossRefGoogle Scholar
  96. 96.
    M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, Solar Efficiency Tables (Version 17), Progr. Photovolt, 9 49–56 (2001).CrossRefGoogle Scholar
  97. 97.
    E. Fletcher, J. Solar Energy Eng, 123 143 (2001).CrossRefGoogle Scholar
  98. 98.
    A. Yogev, Quantum Processes for Solar Energy Conversion, Weizmann Sun Symp. Proc., Rehovot, Israel, 1996.Google Scholar
  99. 99.
    R. Kribus, J. Doron, P. Rubin, J. Karni, R. Reuven, S. Duchan, and T. Tragan, A multistage solar receiver, Solar Energy, 67 3–11 (1999).CrossRefGoogle Scholar
  100. 100.
    E. Segal and M. Epstein, The optics of the solar tower reflector, Solar Energy, 69 229– 241 (2001).CrossRefGoogle Scholar
  101. 101.
    B. Misch, A. Firus, and G. Brunner, An alternative method of oxidizing aqueous waste in supercritical water: oxygen supply by means of electrolysis, J. Supercritical Fluids, 17 227–237 (2000).CrossRefGoogle Scholar
  102. 102.
    O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, 45 2423–35 (2000).CrossRefGoogle Scholar
  103. 103.
    D. Kusunoki, Y. Kikuoka, V. Yanagi, K. Kugimiya, M. Yoshino, M. Tokura, K. Watanabe H. Miyamoto, S. Ueda, M. Sumi, and S. Tokunaga, Development of Mitsubishi - planar reversible cell - Fundamental test on hydrogen-utilized electric power storage system, Int. J. Hydrogen Energy, 20 831–834 (1995).CrossRefGoogle Scholar
  104. 104.
    K. Eguchi , T. Hatagishi, and H. Arai, Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte, Solid State Ionics, 86-8 1245–1249 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stuart Licht
    • 1
  1. 1.University of MassachusettsBoston

Personalised recommendations