Electrolysis of Water

  • Kevin Harrison
  • Johanna Ivy Levene


Wind Turbine Hydrogen Production Alternate Current Electricity Price Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Suresh, S. Schlag, and Y. Inogucji, Chemical Economics Handbook Marketing Research Report, SRI Consulting, 2004.Google Scholar
  2. 2.
    M. Momirlana and T.N.Veziroglub, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, International Journal of Hydrogen Energy 30, 795 (2005).CrossRefGoogle Scholar
  3. 3.
    Hemoglobin, in Wikipedia, the Free Encyclopedia, Retrieved on June 22, 2006 from Scholar
  4. 4.
    Annual Energy Review 2004, EIA,, Report No. DOE/EIA-0384 (2004), August 2005.Google Scholar
  5. 5.
    Safe Use of Hydrogen and Hydrogen Systems, NASA Training Center, 2006.Google Scholar
  6. 6.
    J. B. Heywood, Fueling our transportation future, Scientific American. 295 60 (2006).CrossRefGoogle Scholar
  7. 7.
    W. E. Winshe, K. C. Hoffman, and F. J. Salzano, Hydrogen: Its future role in the nation’s energy economy, Science 180 1325 (1973).CrossRefGoogle Scholar
  8. 8.
    J. Levene, B. Kroposki, and G. Sverdrup, Wind Energy and Production of Hydrogen and Electricity - Opportunities for Renewable Hydrogen, NREL Report No. CP-560-39534, 2006.Google Scholar
  9. 9.
    Comparative Cost of Wind and Other Energy Sources, American Wind Energy Association (AWEA),, 2001.Google Scholar
  10. 10.
    The Economics of Wind Energy, American Wind Energy Association,, February 2005. 62Google Scholar
  11. 11.
    R. L. Ottinger, D. Wooley, D. R. Hodas, N. A. Robinson, and S. E. Babb, Pace University Center for Environmental Legal Studies; Environmental Costs of Electricity, Oceana Publications, New York, 1990.Google Scholar
  12. 12.
    K. Silverstein, Clean tech goes mainstream, EnergyBiz Insider, central. com/centers/energybiz/ebi_detail.cfm?id=164, CyberTech Inc., 2006.Google Scholar
  13. 13.
    J. B. S. Haldane, DAEDALUS or Science and the Future, E. P. Kutton & Company, New York, 1923.Google Scholar
  14. 14.
    Technology Brief: Analysis of Current-Day Commercial Electrolyzers, NREL, Golden, CO NREL/FS-560-36705, September 2004.Google Scholar
  15. 15.
    J. A. Turner, Sustainable hydrogen production, Science. 305 972 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Konopka and D. Gregory, Hydrogen Production by Electrolysis: Present and Future, in 10th Intersociety Energy Conversion Engineering Conference, IEEE Cat. No. 75CHO 983-7 TAB, 1975.Google Scholar
  17. 17.
    W. Kincaide, Alkaline Electrolysis: Past, Present and Future, in Hydrogen for Energy Distribution, Institute of Gas Technology, 1978.Google Scholar
  18. 18.
    Ryton ® PPS - Chevron Phillips Chemical Company LLC, Retrieved on June 29, 2006, from, 2006.Google Scholar
  19. 19.
    J. M. Smith, H. C. Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 6th ed., Mc Graw Hill, New York, 2001.Google Scholar
  20. 20.
    J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., John Wiley and Sons, Ltd., West Sussex, England, 2002.Google Scholar
  21. 21.
    T. Padfield, Moisture in air, Equations describing the physical properties of moist air, retrieved on January 9, 2006, from, 1996.Google Scholar
  22. 22.
    A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc., New York, 2001.Google Scholar
  23. 23.
    S. H. Chan, K. A. Khor, and Z. T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources 93 130 (2001).Google Scholar
  24. 24.
    T. Berning and N. Djilali, "Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell — A Parametric Study," Journal of Power Sources, vol. 106, pp. 284-292, 2003.Google Scholar
  25. 25.
    P. Choi, D. G. Bessarabov, and R. Datta, A simple model for solid polymer electrolyte (SPE) water electrolysis, Solid State Ionics, 175 535 (2004).Google Scholar
  26. 26.
    UHP Zero Air and Hydrogen Generators for Fuel Gas, 2006 <http://www.chromtech. com/online_catalog/instruments/gas_gen/Hydrogen_ZeroAir2.pdf>, p. 3.Google Scholar
  27. 27.
    Peak Scientific: The Future of Gas Generation, 2007, Peak Scientific, 2006. <http://www. ProductID=25>.Google Scholar
  28. 28.
    J. Ivy, Summary of Electrolytic Hydrogen Production: Milestone Completion Report, NREL, Golden, CO, NREL/MP-560-35948, April 2004.Google Scholar
  29. 29.
    AccaGen SA – Homepage, Vol. 2006, AccaGen SA, 2006 <>.Google Scholar
  30. 30.
    GHW - Gesellschaft für Hochleistungselektrolyseure zur Wasserstofferzeugung mbH, 2006 <>.Google Scholar
  31. 31.
    Welcome to Giner Inc..Vol. 2006, Giner, Inc. and Giner Electrochemical Systems, LLC 2006 <>.Google Scholar
  32. 32.
    Hamilton Sundstrand - System Solutions, Vol. 2006, Hamilton Sundstrand, 2006 <>.Google Scholar
  33. 33.
    Hydrogenics, On-site hydrogen generation stations, hydrogen storage and compression, Vol. 2006, 2006 <>.Google Scholar
  34. 34.
    IHT, Clean hydrogen solutions. Vol. 2006, 2006 <>. Kevin Harrison and Johanna Ivy Levene Electrolysis of Water 63Google Scholar
  35. 35.
    Linde, Hydrogen Solutions - Supply > On-Site > Ecovar® | Linde Gas Division, Vol. 2006, 2006 <>.Google Scholar
  36. 36.
    Hydro, Hydrogen Technologies, Vol. 2006, 2006 <>.Google Scholar
  37. 37.
    On-site hydrogen generation stations, hydrogen storage and compression, Vol. 2006: Hydrogenics Corporation, 2006 <>.Google Scholar
  38. 38.
    Clean hydrogen solutions, Vol. 2006, IHT, 2006 <>.Google Scholar
  39. 39.
    Hydrogen Solutions - Supply > On-Site > Ecovar ® | Linde Gas Division, Vol. 2006, Linde, 2006 <>.Google Scholar
  40. 40.
    Hydrogen Technologies, Vol. 2006, Norsk Hydro Electrolysers AS, 2006, <http://www.>.Google Scholar
  41. 41.
    R. Merer, RE: H2A Update, personal e-mail, 17 Mar. 2004.Google Scholar
  42. 42.
    3.1 Hydrogen Production, Multi-Year Research, Development and Demonstration Plan: Planned program activities for 2003-2010, Washington DC, US Department of Energy, Energy Efficiency and Renewable Energy, January 21, 2005, p. 51.Google Scholar
  43. 43.
    S. Hock, C. Elam, and D. Sandor, Can we get there? Technology advancements could make a hydrogen electric economy viable—and expand opportunities for all renewables, Solar Today, May-June 2004, p.24-28.Google Scholar
  44. 44.
    Proton Energy Manufactures Three Families of HOGEN® Hydrogen Generation Systems, Proton Energy Systems - Products - HOGEN H Series, Hogen S Series, Hogen GC, retrieved on July 6, 2006, from, 2005.Google Scholar
  45. 45.
    Hybrid Wind Energy System, Retrieved on June 26, 2006, from http://energy.coafes.umn. edu/windenergy, University of Minnesota, Research and Demonstration Center, 2005.Google Scholar
  46. 46.
    Basin electric joins pilot project to marry wind, hydrogen, Energy Services Bulletin, retrieved on May 22, 2006, from, 2006.Google Scholar
  47. 47.
    G. Schroeder, Transition to the Hydrogen Age Transition to the Hydrogen Age: Myths and Realities, retrieved on June 29, 2006 from pdf, 2006.Google Scholar
  48. 48.
    A. F. G. Smith and M. Newborough, Low-Cost Polymer Electrolysers and Electrolyser Implementation Scenarios for Carbon Abatement, Heriot-Watt University, Edinburgh, Report to the Carbon Trust and ITM-Power PLC, November 200.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kevin Harrison
    • 1
  • Johanna Ivy Levene
    • 1
  1. 1.NRELGolden

Personalised recommendations