The Solar Resource

  • Daryl R. Myers


Aerosol Optical Depth Direct Beam Spectral Distribution Spectral Irradiance Renewable Energy System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cox, A. N., ed. Allen’s Astrophysical Quantities. 4th ed., AIP Press, Springer Verlag, New York, NY., 1999.Google Scholar
  2. 2.
    ASTM, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, Standard E490-00a, American Society for Testing and Materials, West Conshohocken, PA, 2000.Google Scholar
  3. 3.
    C. Frohlich and J. Lean, Total Solar Irradiance Variations: The Construction of a Composite and it’s Comparison with Models, International Astronomical Union Symposium 185: New Eyes to See Inside the Sun and Stars, Dortrect, The Netherlands, Kluwer Academic, 1998.Google Scholar
  4. 4.
    C. A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models, Solar Energy,. 76(4) 423 (2004).CrossRefGoogle Scholar
  5. 5.
    R. L. Kurucz, Synthetic Template Spectra. Highlights of Astronomy, L. Appenzeller, ed., Vol. 10, The Hague, Netherlands, Aug 15-17, 1994, Kluwer Acad. (1995) pp. 407–409.Google Scholar
  6. 6.
    W. M. Farmer, The Atmospheric Filter, Vol. I., JCD Publishing, Winter Park, FL, 2001, p. 273.Google Scholar
  7. 7.
    C. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Solar Energy 71(5) 325 (2001).CrossRefGoogle Scholar
  8. 8.
    H. Field, Solar Cell Spectral Response Measurements Related to Spectral Bandwidth and Chopped Light Waveform, 26th IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronic Engineers, Anaheim, CA, 1997.Google Scholar
  9. 9.
    I. Reda, J. Hickey, C. Long, D. Myers, T. Stoffel, S. Wilcox, J. J. Michalsky, E. G. Dutton, and D. Nelson, Using a blackbody to calculate net-longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibra- Journal of Atmospheric and Oceanic tion using the component sum method, Technology 22 1531 (2005). The Solar Resource 39CrossRefGoogle Scholar
  10. 10.
    ASTM, Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface, Standard G177-03. 2003 American Society for Testing and Materials, West Conshohocken, PA.Google Scholar
  11. 11.
    ISO, Solar energy—Reference solar spectral irradiance at the ground at different receiving conditions, pt. 1. International Standard 9845-1, International Organization for Standardization, 1992.Google Scholar
  12. 12.
    C. Gueymard, D. Myers, and K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Solar Energy,. 73(6) 443 (2002).CrossRefGoogle Scholar
  13. 13.
    S. Kurtz, D. Myers, T. Townsend, C. Whitaker, A. Maish, R. Hulstrom, and K. Emery, Outdoor rating conditions for photovoltaic modules and systems. Solar Energy Materials Solar Cells 62 379 (2000).CrossRefGoogle Scholar
  14. 14.
    Myers, D., K. Emery, C. Gueymard, Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation. ASME Journal of Solar Energy Engineering, 2004. 126: p. 567-574.Google Scholar
  15. 15.
    G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, Jr., H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, MODTRAN4: Radiative Transfer Modeling for Remote Sensing, in Optics in Atmospheric Propagation and Adaptive Systems III, Society of Photo-Optical Instrumentation Engineers Bellingham, WA., 1999.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daryl R. Myers
    • 1
  1. 1.NRELGolden

Personalised recommendations