Renewable Energy and the Hydrogen Economy

  • Krishnan Rajeshwar
  • Robert McConnell
  • Kevin Harrison
  • Stuart Licht


Fuel Cell Fossil Fuel Solar Energy Wind Turbine High Heating Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Arrhenius, Phil. Mag. 41 237 (1896).Google Scholar
  2. 2.
    M. I. Hoffert et al., Science 298 981 (2002).CrossRefGoogle Scholar
  3. 3.
    M. I. Hoffert and C. Covey, Nature 360 573 (1992). Krishnan Rajeshwar et al. Renewable Energy and the Hydrogen Economy 17CrossRefGoogle Scholar
  4. 4.
    R. D. McConnell, J. A. Turner, J. B. Lasich, and D. Holland, Concentrated solar energy for the electrolytic production of hydrogen., in International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, Alice Springs, Australia, 2004, p. 24.Google Scholar
  5. 5.
    J. R. Petit, et al., Vostok Ice Core Data for 420,000 Years, NOAA/NGDC Paleoclimatology Program, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076, Boulder, CO, 2001.Google Scholar
  6. 6.
    WMO Greenhouse Gas Bulletin 2005: Atmospheric Carbon Dioxide Levels Highest On Record, World Meteorological Organization, Retrieved on November 5, 2006, from, 2006.Google Scholar
  7. 7.
    C. G. Schneider, Death Disease and Dirty Power: Mortality and Health Damage Due to Air Pollution from Power Plants, Clean Air Task Force,Google Scholar
  8. 8.
    Sources: Energy Information Administration, U. S. Department of Energy, Rep. DOE/EIA-0384 (2000), Wash. D. C., August, 2001. International Energy Agency, Scholar
  9. 9.
    J. Rifkin, The Hydrogen Economy, Jeremy P. Tarcher/Putnam, New York, 2002.Google Scholar
  10. 10.
    D. L. Albritton et al., Summary for Policy Makers: Climate Changes 2001: A Report of Working Group I of the Intergovernmental Panel on Climate Change, IPCC, 2001. Scholar
  11. 11.
    S. F. Baldwin, Physics Today, April 2002, p. 62.Google Scholar
  12. 12.
    M. I. Hoffert et al., Nature 395, 881 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Gregory, A Brief History of the Hydrogen Energy Movement, Symposium Papers: Hydrogen for Energy Distribution, Institute of Gas Technology, Chicago, 1978.Google Scholar
  14. 14.
    D. H. Smith, Industrial water electrolysis, in Industrial Electrochemical Processes, edited by A. T. Kuhn, Elsevier Publishing Company, 1971, pp. 127–157.Google Scholar
  15. 15.
    D. Gregory, The hydrogen economy, in Scientific American. 228 (1) 13 (1973).Google Scholar
  16. 16.
    D. Gregory and J. B. Pangborn, Hydrogen energy, in Hydrogen for Energy Distribution, Institute of Gas Technology, 1978, pp. 279–310.Google Scholar
  17. 17.
    K. E. Cox, J. K.D. Wiliamson, Hydrogen: Its technology and implications, Production Technology, CRC Press, 1 (1977).Google Scholar
  18. 18.
    A. Konopka, D. Gregory, Hydrogen production by electrolysis: Present and future, in 10th Intersociety Energy Conversion Engineering Conference, IEEE Cat. No. 75CHO 983-7 TAB, 1975.Google Scholar
  19. 19.
    Safe Use of Hydrogen and Hydrogen Systems, NASA Training Center, 2006.Google Scholar
  20. 20.
    J. C. Bokow, Fabric, Not Filling, to Blame Hydrogen Exonerated in Hindenburg Disaster, National Hydrogen Association,,, 1997.Google Scholar
  21. 21.
    R. W. Larson, The right future? ASES and the renewables community examine renewable hydrogen’s potential benefits — and weigh growing concerns, in Solar Today, 2004.Google Scholar
  22. 22.
    Hydrogen Properties, College of the Desert, fuelcells/techvalidation/pdfs/fcm01r0.pdf, December 2001.Google Scholar
  23. 23.
    P. M. Ordin, Safety Standard for Hydrogen and Hydrogen Systems, l. NSS 1740.16: NASA, Office of Safety and Mission Assurance, 1997.Google Scholar
  24. 24.
    OSH Answers: Compressed Gases-Hazards, Canadian Centre for Occupational Health & Safety (CCOHS), Retrieved on March 25, 2006, from, 2005.Google Scholar
  25. 25.
    Basic Research Needs for Solar Energy Utilization, Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005, Office of Science, U. S. Department of Energy, Wash. D. C. See also Scholar
  26. 26.
    Prof. Nate Lewis’ website: Scholar
  27. 27.
    A. J. Nozik, Inorg. Chem. 44, 6893 (2005). 18CrossRefGoogle Scholar
  28. 28.
    J. A. Turner, M. C. Williams, K. Rajeshwar, The Electrochemical Society Interface, Fall 2004, p. 24. 29.Google Scholar
  29. 29.
    The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, The National Academies Press, Washington, D. C., 2004.Google Scholar
  30. 30.
    Solar Electricity: The Power of Choice, Second Quarter, 2001; Scholar
  31. 31.
    K. B. Oldham, J. C. Myland, Fundamentals of Electrochemical Science, Academic Press, San Diego, 1994, p. 129.Google Scholar
  32. 32.
    M. D. Archer, J. R. Bolton, J. Phys. Chem. 94 8028 (1990).CrossRefGoogle Scholar
  33. 33.
    J. R. Bolton, Solar Energy 57 37 (1996).CrossRefGoogle Scholar
  34. 34.
    A. J. Bard, M. A. Fox, Acc. Chem. Res. 28 141 (1995).CrossRefGoogle Scholar
  35. 35.
    J. S. Kilby, J. W. Lathrop, W. A. Porter, U. S. Patents 4 021 323 (1977); 4 100 051 (1978); 4 136 436 (1979).Google Scholar
  36. 36.
    R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford, U. K., 2002.Google Scholar
  37. 37.
    R. D. Britt, ed., Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.Google Scholar
  38. 38.
    J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Inorg. Chem. 44, 6802 (2005).CrossRefGoogle Scholar
  39. 39.
    V. Ramani, H. R. Kunz and J. M. Fenton, The Electrochemical Society Interface, Fall 2004, p. 17.Google Scholar
  40. 40.
    J. M. Ogden, Physics Today, April 69 (2002).CrossRefGoogle Scholar
  41. 41.
    J. M. Ogden, Sci. Amer. 295 94 (2006).CrossRefGoogle Scholar
  42. 42.
    D. Berger, Science 286 49 (1999).CrossRefGoogle Scholar
  43. 43.
    R. Bashyam and P. Zelenay, Nature 443 63 (2006).CrossRefGoogle Scholar
  44. 44.
    C. He, S. Desai, G. Brown, and S. Bollepalli, The Electrochemical Society Interface Fall 41 (2005).Google Scholar
  45. 45.
    M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, and P. T. Yu, The Electrochemical Society Interface Fall 24 (2005).Google Scholar
  46. 46.
    W. Vielstich, A. Lamm, and H. A. Gasteiger, Ed., Handbook of Fuel Cells – Fundamentals, Technology, and Applications, John Wiley & Sons, Chicester, U. K., 2003.Google Scholar
  47. 47.
    H. A. Liebhafsky and E. J. Cairns, Fuel Cells and Fuel Batteries: A Guide to Their Research and Development, John Wiley & Sons, New York, 1969.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Krishnan Rajeshwar
    • 1
  • Robert McConnell
    • 2
  • Kevin Harrison
    • 2
  • Stuart Licht
    • 3
  1. 1.University of Texas at ArlingtonArlington
  2. 2.NRELGolden
  3. 3.University of MassachussettsBoston

Personalised recommendations