Pareto and Generalized Pareto Distributions

  • Barry C. Arnold
Part of the Economic Studies in Equality, Social Exclusion and Well-Being book series (EIAP, volume 5)


More than one hundred years after its introduction, Pareto’s proposed model for fitting income distributions continues to be heavily used. A variety of generalizations of this model have been proposed including discrete versions, together with natural multivariate extensions. Several stochastic scenarios can be used to justify the prevalence of income distributions exhibiting approximate Paretian behavior. This chapter will provide a survey of results related to these Pareto-like models including discussion of related distributional and inferential questions. Topics will include the classical Pareto models and its generalizations, stochastic income models leading to Paretian income distributions, distributional properties of generalized Pareto distributions, related discrete distributions, inequality measures for Paretian models, inferential issues and multivariate extensions.


Income Distribution Survival Function Gini Index Pareto Distribution Lorenz Curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, B. C. (1983) Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland USA.Google Scholar
  2. Arnold, B. C., N. Balakrishnan and H. N. Nagaraja (1992) A First Course in Order Statistics, Wiley, New York.Google Scholar
  3. Arnold, B. C., E. Castillo and J. M. Sarabia (1998) Bayesian Analysis for Classical Distributions Using Conditionally Specified Priors, Sankya B, 60, 228-245.Google Scholar
  4. Arnold, B. C., E. Castillo and J. M. Sarabia (1999) Conditional Specification of Statistical Models, Springer, New York.Google Scholar
  5. Arnold, B. C. and L. Laguna (1976) A Stochastic Mechanism Leading to Asymptotically Paretian Distributions, Proceedings of the American Statistical Association. Business and Economic Statistics Section.Google Scholar
  6. Arnold, B. C. and L. Laguna (1977) On Generalized Pareto Distributions with Applications to Income Data, International Studies in Economics, Monograph No. 10, Department of Economics, Iowa State University.Google Scholar
  7. Arnold, B. C. and S. J. Press (1986) Bayesian Analysis of Censored or Grouped Data from Pareto Populations, in Studies in Bayesian Econometrics and Statistics, 6, pp. 157-173, Amsterdam, North Holland.Google Scholar
  8. Arnold, B. C. and S. J. Press (1989) Bayesian Estimation and Prediction for Pareto Data, Journal of American Statistical Association, 84, 1079-1084.CrossRefGoogle Scholar
  9. Balkema, A. A. and L. de Haan (1974) Residual Life Time at Great Age, Annals of Probability, 2, 792-804.CrossRefGoogle Scholar
  10. Brazauskas, V. (2002) Fisher Information Matrix for the Feller-Pareto Distribution, Statistics and Probability Letters, 59, 159-167.CrossRefGoogle Scholar
  11. Brazauskas, V. (2003) Information Matrix for Pareto (IV), Burr and Related Distri-butions, Communications in Statistics: Theory and Methods, 32, 315-325.CrossRefGoogle Scholar
  12. Brazauskas, V. and R. Serfling (2000) Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution, North American Actuarial Jour-nal, 4, 12-27. Google Scholar
  13. Burr, I. W. (1942) Cumulative Frequency Functions, Annals of Mathematical Statistics, 13, 215-232.CrossRefGoogle Scholar
  14. Champernowne, D. G. (1937) The Theory of Income Distribution, Econometrica, 5, 379-381.Google Scholar
  15. Champernowne, D. G. (1953) A Model of Income Distribution, Economic Journal, 63, 318-351.CrossRefGoogle Scholar
  16. Champernowne, D. G. (1973) The Distribution of Income, Cambridge University Press, Cambridge.Google Scholar
  17. Dalton, H. (1920) The Measurement of the Inequality of Income, Economic Journal, 30, 348-361.CrossRefGoogle Scholar
  18. Ericson, O. (1945) Un Probleme de la Repartition des Revenus, Skand. Aktuar, 28, 247-257.Google Scholar
  19. Feller, W. (1971) An Introduction to Probability Theory and Its Applications, vol. 2, 2nd ed., Wiley, New York.Google Scholar
  20. Gastwirth, J. L. (1971) A General Definition of the Lorenz Curve, Econometrica, 39, 1037-1039.CrossRefGoogle Scholar
  21. Gibrat, R. (1931) Les In égalit és E'conomiques, Librairie du Recueil Sirey, Paris.Google Scholar
  22. Gini, C. (1914) Sulla Misura della Concentrazione e della Variabilit à dei Caratteri, Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, 73, 1203-1248.Google Scholar
  23. Houchens, R. L. (1984) Record Value Theory and Inference, Ph.D. Dissertation, University of California, Riverside, California.Google Scholar
  24. Huang, J. S. (1978) On a “Lack of Memory” Property, Tech. Rep. 84, Statistical Series, University of Guelph, Guelph, Ontario, Canada.Google Scholar
  25. Johnson, N. L., S. Kotz and N. Balakrishnan (1994) Continuous Univariate Distributions, vol. 1, 2nd ed., Wiley, New York.Google Scholar
  26. Kalbfleisch, J. D. and R. L. Prentice (2002) The Statistical Analysis of Failure Time Data, 2nd ed., Wiley, New York.Google Scholar
  27. Kleiber, C. and S. Kotz (2003) Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley, Hoboken, NJ.CrossRefGoogle Scholar
  28. Krishnaji, N. (1970) Characterization of the Pareto Distribution through a Model of Under-Reported Incomes, Econometrica, 38, 251-255.CrossRefGoogle Scholar
  29. Lorenz, M. O. (1905) Methods of Measuring the Concentration of Wealth, Quarterly Publications of the American Statistical Association, 9 (New Series, No. 70), 209-219.Google Scholar
  30. Lwin, T. (1972) Estimation of the Tail of the Paretian Law, Skand. Aktuar, 55, 170-178.Google Scholar
  31. Lydall, H. F. (1959) The Distribution of Employment Income, Econometrica, 27, 110-115.CrossRefGoogle Scholar
  32. Mardia, K. V. (1962) Multivariate Pareto Distributions, Annals of Mathematical Statistics, 33, 1008-1015.CrossRefGoogle Scholar
  33. Pareto, V. (1897) Cours d’Economie Politique, Rouge, Lausanne.Google Scholar
  34. Pickands, J. (1975) Statistical Inference Using Extreme Order Statistics, Annals of Statistics, 3, 119-131. CrossRefGoogle Scholar
  35. Pietra, G. (1932) Nuovi Contributi Alla Methodologia Degli Indici di Variabilita e di Concentrazione, Atti del Reale Instituto Veneto di Scienze, Lettere ed Arti, 91, 989-1008.Google Scholar
  36. Pillai, R. N. (1991) Semi-Pareto Processes, Journal of Applied Probability, 28, 461-465.CrossRefGoogle Scholar
  37. Quandt, R. E. (1966) Old and New Methods of Estimation and the Pareto Distribution, Metrika, 10, 55-82.CrossRefGoogle Scholar
  38. Saksena, S. K. (1978) Estimation of Parameters in a Pareto Distribution and Simultaneous Comparison of Estimation, Ph.D. thesis, Louisiana Tech. University, Ruston (Louisiana).Google Scholar
  39. Sukhatme, P. V. (1937) Tests of Significance for Samples of the Chi Squared Popu-lation with Two Degrees of Freedom, Annals of Eugenics, 8, 52-56.Google Scholar
  40. Zipf, G. (1949) Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Barry C. Arnold
    • 1
  1. 1.Department of StatisticsUniversity of CaliforniaRiversideUSA

Personalised recommendations