Modelling Lorenz Curves: Robust and Semi-parametric Issues

  • Frank A. Cowell
  • Maria-Pia Victoria-Feser
Part of the Economic Studies in Equality, Social Exclusion and Well-Being book series (EIAP, volume 5)


Modelling Lorenz curves (LC) for stochastic dominance comparisons is central to the analysis of income distributions. It is conventional to use non-parametric statistics based on empirical income cumulants which are used in the construction of LC and other related second-order dominance criteria. However, although attractive because of its simplicity and its apparent flexibility, this approach suffers from important drawbacks. While no assumptions need to be made regarding the data-generating process (income distribution model), the empirical LC can be very sensitive to data particularities, especially in the upper tail of the distribution. This robustness problem can lead in practice to “wrong” interpretation of dominance orders. A possible remedy for this problem is the use of parametric or semi-parametric models for the data-generating process and robust estimators to obtain parameter estimates. In this paper, we focus on the robust estimation of semi-parametric LC and investigate issues such as sensitivity of LC estimators to data contamination (Cowell and Victoria-Feser, 2002), trimmed LC (Cowell and Victoria-Feser, 2006), and inference for trimmed LC (Cowell and Victoria-Feser, 2003), robust semi-parametric estimation for LC (Cowell and Victoria-Feser, 2007), selection of optimal thresholds for (robust) semi-parametric modelling (Dupuis and Victoria-Feser, 2006), and use both simulations and real data to illustrate these points.


Income Distribution Maximum Likelihood Estimator Stochastic Dominance Lorenz Curve Robust Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, A. B. (2004) Income tax and Top Incomes over the Twentieth Century, Hacienda P ública Española, 168, 123-141.Google Scholar
  2. Beirlant, J., P. Vynckier and J. L. Teugels (1996) Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnistics, Journal of the American Statistical Association, 91, 1651-1667. Google Scholar
  3. Cowell, F. A. (2007) Inequality: Measurement, in L. Blume and S. Durlauf (eds.) The New Palgrave, Palgrave Macmillan, Basingstoke, Hampshire, UK.Google Scholar
  4. Cowell, F. A. and M.-P. Victoria-Feser (2002) Welfare Rankings in the Presence of Contaminated Data, Econometrica, 70, 1221-1233.CrossRefGoogle Scholar
  5. Cowell, F. A. and M.-P. Victoria-Feser (2003) Distribution-Free Inference for Welfare Indicies under Complete and Incomplete Information, Journal of Economic Inequality, 1, 191-219.CrossRefGoogle Scholar
  6. Cowell, F. A. and M.-P. Victoria-Feser (2006) Distributional Dominance with Trimmed Data, Journal of Business & Economic Statistics, 24, 291-300.CrossRefGoogle Scholar
  7. Cowell, F. A. and M.-P. Victoria-Feser (2007) Robust Stochastic Dominance: A Semi-Parametric Approach, Journal of Economic Inequality, 5, 21-37.CrossRefGoogle Scholar
  8. Dagum, C. (1977) A New Model of Personal Income Distribution: Specification and Estimation, Economie Appliqu ée, 30, 413-436.Google Scholar
  9. Dagum, C. (1980) Generating Systems and Properties of Income Distribution Models, Metron, 38, 3-26.Google Scholar
  10. Dagum, C. (1983) Income Distribution Models, in D. L. Banks, C. B. Read and S. Kotz (eds.) Encyclopedia of Statistical Sciences, Vol 4, pp. 27-34.Google Scholar
  11. Dagum, C. (1985) Lorenz Curve, in D. L. Banks, C. B. Read and S. Kotz (eds.) Encyclopedia of Statistical Sciences, Vol 5, pp. 156-161.Google Scholar
  12. Department of Social Security (1992) Households Below Average Income: A Statistical Analysis, 1979-1988/9, London: HMSO.Google Scholar
  13. Dupuis, D. J. and M.-P. Victoria-Feser (2006) A Robust Prediction Error Criterion for Pareto Modeling of Upper Tails, Canadian Journal of Statistics, 34, 639-658.CrossRefGoogle Scholar
  14. Embrechts, P., C. Klu¨pperberg and T. Mikosch (1997) Modelling Extremal Events. Applications of Mathematics: Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  15. Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw and W. A. Stahel (1986) Robust Statistics: the Approach Based on Influence Functions, John Wiley, New York.Google Scholar
  16. Huber, P. J. (1981) Robust statistics, John Wiley, New York.CrossRefGoogle Scholar
  17. Kleiber, C. and S. Kotz (2003) Statistical Size Distributions in Economics and Actuarial Sciences, Wiley & Sons, New Jersey.CrossRefGoogle Scholar
  18. Kopczuk, W. and E. Saez (2004) Top Wealth Shares in the United States, 1916-2000: Evidence from Estate Tax Returns, National Tax Journal, 57, 445-487.Google Scholar
  19. Lorenz, M. O. (1905) Methods of Measuring the Concentration of Wealth, Quarterly Publications of the American Statistical Association, 9 (New Series, No. 70), 209-219.CrossRefGoogle Scholar
  20. McDonald, J. B. (1984) Some Generalized Functions for the Size Distribution of Income, Econometrica, 52, 647-663.CrossRefGoogle Scholar
  21. Moriguchi, C. and E. Saez (1991) The Evolution of Income Concentration in Japan, 1886-2002: Evidence from Income Tax Statistics, NBER Working Paper 12558, National Bureau of Economic Research, Cambridge, Massachusetts.Google Scholar
  22. Pareto, V. (1896) La Courbe de la R épartition de la Richesse, Reprinted 1965 in G. Busoni (ed.): Œuvres Compl ètes de Vilfredo Pareto, Tome 3: Ecrits sur la Courbe de la R épartition de la Richesse, Geneva: Librairie Droz. English translation in Rivista di Politica Economica, 87 (1997), 645-700.Google Scholar
  23. Piketty, T. (2001) Les Hauts Revenus en France au 20eme Si ècle - In égalit és et Redistributions, 1901-1998, Editions Grasset, Paris.Google Scholar
  24. Piketty, T. and E. Saez (2003) Income Inequality in the United States, Quarterly Journal of Economics, 118, 1-39.CrossRefGoogle Scholar
  25. Ronchetti, E. and R. G. Staudte (1994) A Robust Version of Mallow’s Cp , Journal of the American Statistical Association, 89, 550-559.CrossRefGoogle Scholar
  26. Saez, E. and M. Veall (2005) The Evolution of High Incomes in Northen America: Lessons from Canadian Evidence, American Economic Review, 95, 831-849.CrossRefGoogle Scholar
  27. Victoria-Feser, M.-P. (1995) Robust Methods for Personal Income Distribution Models with Application to Dagum’s Model, in C. Dagum and A. Lemmi (eds.) Research on Economic Inequality, Volume 6: Income Distribution, Social Wel-fare, Inequality and Poverty, pp. 225-239, JAI Press, Greenwich.Google Scholar
  28. Victoria-Feser, M.-P. and E. Ronchetti (1994) Robust Methods for Personal Income Distribution Models, The Canadian Journal of Statistics, 22, 247-258.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Frank A. Cowell
    • 1
  • Maria-Pia Victoria-Feser
    • 2
  1. 1.STICERD and Economics DepartmentLondon School of Economics and Political ScienceUK
  2. 2.HEC, Faculty of Economics and Social SciencesUniversity of GenevaSwitzerland

Personalised recommendations