A New Model of Personal Income Distribution: Specification and Estimation

  • Camilo Dagum
Part of the Economic Studies in Equality, Social Exclusion and Well-Being book series (EIAP, volume 5)


The research deduces a new model of income distribution by size from a set of elementary assumptions. Its main properties are analyzed and five methods of parameter estimation are proposed. The mathematical form of the Lorenz curve and the Gini concentration ratio associated with the specified model are also deduced. The model is fitted to the observed income distributions of four very dissimilar countries: Argentina, Canada, Sri Lanka and the USA. The fits obtained for the USA in 1960 and in 1969 are compared with those obtained using the lognormal, the gamma and the Singh-Maddala models, working with the sum of squares of deviations and the bounds for the Gini concentration ratio proposed by Gastwirth. In conclusion, the specified model fared better than the others for almost all of the fourteen properties introduced in this paper.


Income Distribution Pareto Distribution Lorenz Curve High Income Group Economic Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J. and J. A. C. Brown (1957) The Lognormal Distribution with Special Reference to its Uses in Enonomics, Cambridge University Press, Cambridge. Google Scholar
  2. Ammon, O. (1895) Die Gesellschaftsordnung und ihre Natrlichen Grundlagen, Jena.Google Scholar
  3. Amoroso, L. (1924) Ricerche Intorno alla Curva dei Redditi, Annali di Mathematica Pura ed Applicata, Serie 4-21, II, 123-157.Google Scholar
  4. Bartels, C. P. A. and H. van Metelen (1975) Alternative Probability Density Func-tions of Income, Vrije University Amsterdam: Research Memorandum No. 29, 30 pages.Google Scholar
  5. Birta, L. G. (1976) OPTPAK a Program Package for Unconstrained Function Mini-mization, Technical Report TR 76-02, University Ottawa, 22 pages.Google Scholar
  6. Budd, E. C. (1970) Distribution Issues: Trends and Policies. Postwar Changes in the Size Distribution of Income in the U.S., A. E. R., 60(2), 247-260.Google Scholar
  7. Central Bank of Ceylon (1974) Survey of Sri Lanka’s Consumer Finances 1973, Colombo, Department of Economic Research, Central Bank of Ceylon. Google Scholar
  8. Champernowne, D. G. (1952) The Graduation of Income Distributions, Economet-rica, 20(4), 591-615.CrossRefGoogle Scholar
  9. Champernowne, D. G. (1953) A Model of Income Distribution, Economic Journal, 63(2), 318-351.CrossRefGoogle Scholar
  10. Conade-Cepal (1965) Distribucion del Ingreso y Cuentas Nacionales en la Argentina, tomos I-V, Buenos Aires, Presidencia de la Nacion Argentina. Google Scholar
  11. Cram ér, H. (1946) Mathematical Methods of Statistics, Princeton University Press, Princeton.Google Scholar
  12. D’Addario, R. (1949) Ricerche sulla Curva dei Redditi, Giornale degli Economisti e Annali di Economia, 8, 91-114.Google Scholar
  13. Dagum, C. (1973) Un Mod èle non Lin éaire de R épartition Fonctionnelle du Revenu, Economie appliqu ée, XXVI(2-3-4), 843-876.Google Scholar
  14. Dagum, C. (1975) A Model of Income Distribution and the Conditions of Existence of Moments of Finite Order, Proceedings of the 40th session of the International Statistical Institute, vol. XLVI, Book 3, Warsaw, pp. 196-202.Google Scholar
  15. Dagum, C. (1977a) A New Model of Income Distribution, the Lorenz Curve and the Gini Concentration Ratio, forthcomming paper.Google Scholar
  16. Dagum, C. (1977b) Analyse R égionale de la r épartition du Revenu au Canada, Economie appliqu ée, XXX(2).Google Scholar
  17. Dagum, C. (1977c) El Modelo Log-Logistico Y La Distribucion Del Ingreso En Argentina, El Trimestre Economico, XLIV (4)(176), 837-864. Google Scholar
  18. Figueroa, A. (ed.) (1974) Estructura del Consumo y Distribution de Ingresos en Lima Metropolitana, 1968-1969, Serie Estudios Economicos No. 1, Lima, Pontificia Universidad Catolica del Peru.Google Scholar
  19. Fisk, P. R. (1961) The Graduation of Income Distributions, Econometrica, 29(2), 171-185.CrossRefGoogle Scholar
  20. Gastwirth, J. L. (1972) The Estimation of the Lorenz Curve and Gini Index, Review of Economics and Statistics, 54, 306-316.CrossRefGoogle Scholar
  21. Gibrat, R. (1931) Les In égalits économiques, Sirey, Paris.Google Scholar
  22. Kakwani, N. C. and N. Podder (1976) Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations, Econometrica, 44 (1), 137-149.CrossRefGoogle Scholar
  23. Kloek, T. and H. K. van Dijk (1976) Efficient Estimation of Income Distribution Pa-rameters, Report 7616/E, Econometric Institute, Erasmus University, Rotterdam, 15 pages.Google Scholar
  24. L évy, P. (1925) Calculs des Probabilits, Gauthier-Villars, Paris.Google Scholar
  25. Mandelbrot, B. (1960) The Pareto-L évy Law and the Distribution of Income, International Economic Review, 1, 79-106.CrossRefGoogle Scholar
  26. Mandelbrot, B. (1963) The Pareto-L évy Law and the Distribution of Income, International Economic Review, IV, 111-115.Google Scholar
  27. March, L. (1898) Quelques Exemples de Distribution de Salaries, Journal de la Soci ét é statistique de Paris, pp. 193-206.Google Scholar
  28. McAlister, D. (1879) The Law of the Geometric Mean, Proceedings of the Royal Society, vol. 29, pp. 367.CrossRefGoogle Scholar
  29. Metcalf, E. C. (1972) An Econometric Model of the Income Distribution, Markham Publishing Company, Chicago.Google Scholar
  30. Morgenstern, O. (1963) On the Accuracy of Economic Observations, 2nd ed., Princeton University Press, Princeton.Google Scholar
  31. Pareto, V. (1895) La Legge della Domanda, Giornale degli Economisti, pp. 59-68, Gennaio.Google Scholar
  32. Pareto, V. (1896) Ecrits sur la Courbe de la R épartition de la Richesse, Euvres compl étes de Vilfredo Pareto publi ées sous la direction de Giovanni Busino, Gen éve, Librairie Droz, 1965.Google Scholar
  33. Pareto, V. (1897) Cours d’Economie Politique, Lausanne, Rouge, New edition by Bousquet G. H. et G. Busino (1964). Gen éve, Librairie Droz.Google Scholar
  34. Pearson, K. (1934) Tables of the Incomplete Beta-Function, Cambridge University Press, Cambridge.Google Scholar
  35. Rao, C. R. (1973) Linear Statistical Inference and its Applications, 2nd ed., John Wiley, New York.CrossRefGoogle Scholar
  36. Rutherford, R. S. G. (1955) Income Distibutions: A New Model, Econometrica, 23(3), 277-294.CrossRefGoogle Scholar
  37. Salem, A. B. Z. and T. D. Mount (1974) A Convenient Descriptive Model of Income Distribution: the Gamma Density, Econometrica, 42(6), 1115-1127. CrossRefGoogle Scholar
  38. Singh, S. K. and G. S. Maddala (1976) A Function for Size Distribution of Incomes, Econometrica, 44(5), 963-970.CrossRefGoogle Scholar
  39. Statistics Canada (1975) Income Distributions by Size in Canada, 1973, Catalogue 13-207, Ottawa.Google Scholar
  40. Thurow, L. C. (1970) Analyzing the American Income Distribution, American Economic Review, 48, 261-269.Google Scholar
  41. US Bureau of the Census (1961-1971) Income of Families and Persons in the United States, Current Population Reports, Series P-60, US Government Printing Office, Washington.Google Scholar
  42. Vinci, F. (1921) Nuovi Contributi allo Studio della Distribuzione dei Redditi, Giornale degli Economisti e Rivista di Statistica, 61, 365-369.Google Scholar
  43. Wold, H. (1961) Unbiased Predictors, Proceedings of the Fourth Berkeley Sympo-sium of Mathematical Statistics and Probability, vol. 1, pp. 719-761.Google Scholar
  44. Wold, H. (1963) On the Consistency of the Least Squares Regression, Sankya, A, 25 (2), 211-215.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Camilo Dagum

There are no affiliations available

Personalised recommendations