Molecular Gas in the Early Universe

  • Fabian Walter
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Over the last few years, the study of high redshift QSOs has been revolutionized in three ways. First, wide field surveys have revealed 100's of high–zQSOs, right back to the epoch of cosmic reionization (z >6; e.g., Fan et al. 2006). Second, it has been shown that most (all?) low redshift spheroidal galaxies have central super-massive black holes (SMBH), and that the black hole mass correlates with bulge velocity dispersion. This M BH σ v correlation suggests coeval formation of galaxies and SMBH, thereby making SMBHs a fundamental aspect of the galaxy formation process (Gebhardt et al. 2000). And third, mm surveys of high redshift QSOs find that 30%of the sources are ‘hyper-luminous infrared galaxies’ ( LFIR = 1013 L), corresponding to thermal emission from warm dust, and that this fraction is independent of redshift out to z= 6.4 (Beelen et al. 2004, Omont et al. 2004). If the dust is heated by star formation, the implied star formation rates are extreme (>103 Myear –1 ), consistent with the formation of a large elliptical galaxy on a dynamical timescale of 108 years.


Black Hole Star Formation Early Universe High Redshift Black Hole Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beelen, A., et al.: A&A, 423, 441 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Bertoldi, F., Cox, P., Neri, R., et al.: A&A, 409, L47 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Carilli, C. L., Menten, K. M., & Yun, M. S.: ApJ, 521, L25 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Carilli, C. L., Kohno, K., Kawabe, R., et al.: AJ, 123, 1838 (2002b)CrossRefADSGoogle Scholar
  5. 5.
    Carilli, C. L., Lewis, G. F., Djorgovski, S. G., et al.: Science, 300, 773 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Carilli, C., et al. 2004, astro-ph/0402573Google Scholar
  7. 7.
    Downes, D., & Solomon, P. M.: ApJ, 507, 615 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Fan, X, et al.: AJ, 131, 1203 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Ferrarese, L. & Merritt, D.: ApJL, 539, L9 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Gebhardt, K., et al.: ApJL, 539, L13 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Hu, E., et al.: ApJ, 459, L53 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Jaffe, W.: MNRAS, 202, 995 (1983)ADSGoogle Scholar
  13. 13.
    Lewis, G. F., Carilli, C., et al.: MNRAS, 330, L15 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Omont, A., et al.: in ‘Multiwavelength AGN Surveys’,World Scientific, Singa-pore, 109 (2004)Google Scholar
  15. 15.
    Papadopoulos, P., Ivison, R. et al. Nature, 409, 58 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Riechers, D. A., Walter, F., Carilli, C. L., et al. ApJ, 650, 604s (2006)CrossRefADSGoogle Scholar
  17. 17.
    Solomon, P. M., & Vanden Bout, P. A.: ARA&A, 43, 677 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Tremaine, S., Richstone, D. O., Byun, Y., et al. AJ, 107, 634 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Walter, F., Bertoldi, F., Carilli, C. L., et al. Nature, 424, 406 (2003)CrossRefADSGoogle Scholar
  20. 20.
    Walter, F., Carilli, C., Bertoldi, F., et al. ApJ, 615, L17 (2004)CrossRefADSGoogle Scholar
  21. 21.
    White, R. L, Becker, R. H, Fan, X., & Strauss, M. A.: AJ, 129, 2102 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Willott, C. J., McLure, R. J., & Jarvis, M. J.: ApJL, 587, L15 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fabian Walter
    • 1
  1. 1.Max Planck Institut for Astronomy HeidelbergGermany

Personalised recommendations