Skip to main content

Coevolution and Downsizing of Supermassive Black Holes and Galactic Bulges

  • Conference paper
Mapping the Galaxy and Nearby Galaxies

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP))

  • 537 Accesses

We consider recently reported “downsizing” of galaxies as well as SMBHs from a theoretical point of view. If the putative SMBH-to-bulge relation is incorporated, the downsizing of galaxies and SMBHs implies the downsizing of galactic bulges. We propose a physical mechanism to bring the downsizing of galactic bulges with the consideration of galaxy formation in UV background radiation. The star formation efficiency in primordial galaxies is basically regulated by the self-shielding againt UV background radiation. At higher redshift epochs, the selfshielding is stronger, and therefore galaxies form in a dissipationless fashion. As a result, earlier type (higher bulge-to-disk ratio) galaxies form at earlier epochs. Besides, a radiation-hydrodynamic mechanism is proposed to account for the SMBHto- bulge relation. The growth of SMBHs can be promoted through the mass accretion driven by radiation drag which is exerted on dusty interstellar gas in radiation fields generated by bulge stars. It turns out that the resultant mass of a SMBH is predicted to be in proportion to the bulge mass, and the mass ratio is basically determined by the nuclear energy conversion efficiency from hydrogen to helium, ε=0.007. In this scenario, the bulge luminosity overwhelms the BH accretion luminosity in the growing phase of SMBH. This phase corresponds to a “proto-QSOV”, thereafter evolving to a QSO. Also, the proto-QSO phase is preceded by an optically-thick ultraluminous infrared galaxy (ULIRG) phase. This provides a coevolution scheme of SMBHs and bulges. If coupled with the downsizing of bulges, this coevolution scheme leads to the downsizing of SMBHs. The present scenario is a potential solution of the coevolution and downsizing of SMBHs and galactic bulges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839

    Article  ADS  Google Scholar 

  2. Kauffmann, G., et al. 2003, MNRAS, 341, 54

    Article  ADS  Google Scholar 

  3. Kodama, T., et al. 2004, MNRAS, 350, 1005

    Article  ADS  Google Scholar 

  4. Glazebrook, K., et al. 2004, Nature, 430, 181

    Article  ADS  Google Scholar 

  5. Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T. 2003, ApJ, 598, 886

    Article  ADS  Google Scholar 

  6. Hasinger, G. 2003, AIP Conf. Proc. 666: The Emergence of Cosmic Structure, 666,227

    ADS  Google Scholar 

  7. Marconi, A., Risaliti, G., Gilli, R., Hunt, L. K., Maiolino, R., & Salvati, M. 2004, MNRAS, 351, 169

    Article  ADS  Google Scholar 

  8. Merloni, A. 2004, MNRAS, 353, 1035

    Article  ADS  Google Scholar 

  9. Kormendy, J., & Richstone, D. 1995, ARAA, 33, 581

    ADS  Google Scholar 

  10. Richstone, D., et al. 1998, Nature, 395A, 14

    ADS  Google Scholar 

  11. Magorrian, J., et al. 1998, AJ, 115, 2285

    Article  ADS  Google Scholar 

  12. Gebhardt, K., et al. 2000a, ApJ, 539, L13

    Article  ADS  Google Scholar 

  13. Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9

    Article  ADS  Google Scholar 

  14. Merritt, D., & Ferrarese, L. 2001a, MNRAS, 320, L30

    Article  ADS  Google Scholar 

  15. McLure, R. J., & Dunlop, J. S. 2002, MNRAS, 331, 795

    Article  ADS  Google Scholar 

  16. Marconi, A., & Hunt, L. K. 2003, ApJ, 589, L21

    Article  ADS  Google Scholar 

  17. Gebhardt, K., et al. 2000b, ApJ, 543, L5

    Article  ADS  Google Scholar 

  18. Merritt, D., & Ferrarese, L. 2001b, ApJ, 547, 140

    Article  ADS  Google Scholar 

  19. Tremaine, T. et al. 2002, ApJ, 574, 740

    Article  ADS  Google Scholar 

  20. Salucci, P., et al. 2000, MNRAS, 317, 488

    Article  ADS  Google Scholar 

  21. Sarzi, M., et al. 2001, ApJ, 550, 65

    Article  ADS  Google Scholar 

  22. Laor, A. 1998, ApJ, 505, L83

    Article  ADS  Google Scholar 

  23. Shields, G. A. et al. 2003, ApJ, 583, 124

    Article  ADS  Google Scholar 

  24. Umemura, M. 2001, ApJ, 560, L29

    Article  ADS  Google Scholar 

  25. Kawakatu, N. & Umemura, M. 2002, MNRAS, 329, 572

    Article  ADS  Google Scholar 

  26. Sato, J., Umemura, M., Sawada, K., & Matsuyama, S. 2004, 354,176

    Google Scholar 

  27. Kawakatu, N. & Umemura, M. 2004, ApJ, 601, L21

    Article  ADS  Google Scholar 

  28. Fioc, M., & Rocca-Volmerrange, B. 1997, A&A, 326, 950

    ADS  Google Scholar 

  29. Kawakatu, N., Umemura, M., & Mori, M. 2003, ApJ, 583, 85

    Article  ADS  Google Scholar 

  30. Larson, R. B. 1976, MNRAS, 176, 31

    ADS  Google Scholar 

  31. Carlberg, R. G. 1985, ApJ, 298, 486

    Article  ADS  Google Scholar 

  32. Katz, N., & Gunn, J. E. 1991, ApJ, 377, 365

    Article  ADS  Google Scholar 

  33. Aarseth, S. J., & Binney, J. 1978, MNRAS, 185, 227

    ADS  Google Scholar 

  34. Aguilar, L. A., & Merritt, D. 1990, ApJ, 354, 33

    Article  ADS  Google Scholar 

  35. Susa, H., & Umemura, M. 2000, ApJ, 537, 578

    Article  ADS  Google Scholar 

  36. Susa, H., & Umemura, M. 2000, MNRAS, 316, L17

    Article  ADS  Google Scholar 

  37. Bromm, V., Coppi, P. S., & Larson, R. B. 1999, ApJ, 527, L5

    Article  ADS  Google Scholar 

  38. Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23

    Article  ADS  Google Scholar 

  39. Nakamura, F. & Umemura, M. 1999, ApJ, 515, 239

    Article  ADS  Google Scholar 

  40. Nakamura, F. & Umemura, M. 2001, ApJ, 548, 19

    Article  ADS  Google Scholar 

  41. Abel, T., Bryan, G. L., & Norman, M. L. 2000, ApJ, 540, 39

    Article  ADS  Google Scholar 

  42. Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93

    Article  ADS  Google Scholar 

  43. Nakamoto, T., Umemura, M., & Susa, H. 2001, MNRAS, 321, 593

    Article  ADS  Google Scholar 

  44. Umemura, M., Nakamoto, T., & Susa, H. 2001, ASP Conference Series, 222, 143

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Umemura, M. (2008). Coevolution and Downsizing of Supermassive Black Holes and Galactic Bulges. In: Wada, K., Combes, F. (eds) Mapping the Galaxy and Nearby Galaxies. Astrophysics and Space Science Proceedings. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72768-4_41

Download citation

Publish with us

Policies and ethics