Advertisement

Galactic Winds

  • Sylvain Veilleux
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the “cooling catastrophe” at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and “preheat” the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

Keywords

Dwarf Galaxy Galactic Wind Extragalactic Astronomy Observational Challenge Local Starburst Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bland-Hawthorn, M. Cohen: ApJ, 582, 246 (2003)CrossRefADSGoogle Scholar
  2. 2.
    G. Cecil, J. Bland-Hawthorn, S. Veilleux: ApJ, 576, 745 (2002)CrossRefADSGoogle Scholar
  3. 3.
    G. Cecil, et al: ApJ, 555, 339 (2001)CrossRefADSGoogle Scholar
  4. 4.
    R. A. Chevalier: ApJ, 397, L39 (1992)CrossRefADSGoogle Scholar
  5. 5.
    J. A. Irwin, Y. Sofue: ApJ, 396, L75 (1992)CrossRefADSGoogle Scholar
  6. 6.
    J. Koda, et al: ApJ, 573, 105 (2002)CrossRefADSGoogle Scholar
  7. 7.
    K. Koyama, et al: Nature, 339, 603 (1989)CrossRefADSGoogle Scholar
  8. 8.
    K. Koyama, et al.: PASJ, 48, 249 (1996)ADSGoogle Scholar
  9. 9.
    C. L. Martin: ApJ, 621, 227 (2005)CrossRefADSGoogle Scholar
  10. 10.
    C. L. Martin: ApJ, 647, 222 (2006)CrossRefADSGoogle Scholar
  11. 11.
    S. Matsushita, et al: ApJ, 617, 20 (2004)Google Scholar
  12. 12.
    D. S. Rupke, S. Veilleux, D. B. Sanders: ApJ, 570, 588 (2002)CrossRefADSGoogle Scholar
  13. 13.
    D. S. Rupke, S. Veilleux, D. B. Sanders: ApJS, 160, 115 (2005)CrossRefADSGoogle Scholar
  14. 14.
    D. S. Rupke, S. Veilleux, D. B. Sanders: ApJ, 632, 751 (2005)CrossRefADSGoogle Scholar
  15. 15.
    C. M. Schwartz, C. L. Martin: ApJ, 610, 201 (2004)CrossRefADSGoogle Scholar
  16. 16.
    P. L. Shopbell, J. Bland-Hawthorn: ApJ, 493, 129 (1998)CrossRefADSGoogle Scholar
  17. 17.
    J. Silk: MNRAS, 343, 249 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Y. Sofue, T. Handa: Nature, 310, 568 (1984)CrossRefADSGoogle Scholar
  19. 19.
    S. Veilleux, G. Cecil, J. Bland-Hawthorn: ARAA, 43, 769 (2005)CrossRefADSGoogle Scholar
  20. 20.
    S. Veilleux, D. Rupke: ApJ, 565, L63 (2002)CrossRefADSGoogle Scholar
  21. 21.
    F. Walter, A. Weiss, N. Scoville: ApJ, 580, L21 (2002)CrossRefADSGoogle Scholar
  22. 22.
    S. Yamauchi, et al: ApJ, 365, 532 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sylvain Veilleux
    • 1
  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations