Advertisement

Numerical Modeling of the ISM in the Galactic Center and Disks

  • Keiichi Wada
  • Colin A. Norman
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

The probability distribution functions (PDF) of density of the interstellar medium (ISM) in galactic disks and global star formation rate (SFR) are discussed. 3-D hydrodynamic simulations show that the PDFs in globally stable, inhomogeneous ISM in galactic disks are well fitted by a single log-normal function over a wide density range. The dispersion of the log-normal PDF (LN-PDF) is larger for more gas-rich systems, whereas the characteristic density of LN-PDF, for which the volume fraction becomes the maximum, is not sensitive for the gas mass. Using the LN-PDF, we give a generalized version of Schmidt-Kennicutt law, i.e. SFR as a function of average gas density, a critical local density for star formation, and star formation efficiency. We find that the observed SFR in normal and starburst galaxies are well-fitted by the theoretical SFR in a wide range of the global gas density (10 –104 M⊙pc–2). Star formation efficiency (SFE) for high density gas (n>103 cm–3) may be intrinsically different between starburst and normal galaxies.

Keywords

Probability Distribution Function Star Formation Star Formation Rate Galactic Disk Characteristic Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Avillez, M. A. 2000, MNRAS, 315, 479 M. 1985, A&Ap, 150, 327Google Scholar
  2. 2.
    Bania, T. M. & Lyon, J. G., 1980, ApJ, 239, 173CrossRefADSGoogle Scholar
  3. 3.
    Elmegreen, B. G. 2002, ApJ, 577, 206CrossRefADSGoogle Scholar
  4. 4.
    Kennicutt, R., 1998, ApJ, 498, 541CrossRefADSGoogle Scholar
  5. 5.
    Komugi, S., Sofue, Y., Nakanishi, H., Onodera, S., & Egusa, F., 2005, PASJ, 57,733ADSGoogle Scholar
  6. 6.
    Liou, M., Steffen, C., 1993, J.Comp.Phys., 107, 23MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Rosen, A., Bregman, J.N., 1995, ApJ, 440, 634CrossRefADSGoogle Scholar
  8. 8.
    Scalo, J., Vázquez-Semadeni, E., Chappell, D., Passot, T., 1998, ApJ, 504, 835CrossRefADSGoogle Scholar
  9. 9.
    Slyz, A. D., Devriendt, J. E. G., Bryan, G., & Silk, J. 2005, MNRAS, 356, 737CrossRefADSGoogle Scholar
  10. 10.
    Vázquez-Semadeni, E., Gazol, A. & Scalo, J. 2000, ApJ, 540, 271 98Google Scholar
  11. 11.
    Wada, K. & Norman, C. A. 1999, ApJL, 516, L13CrossRefADSGoogle Scholar
  12. 12.
    Wada, K. & Norman, C. A. 2001, ApJ, 547, 172CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keiichi Wada
    • 1
  • Colin A. Norman
  1. 1.Center for Computational AstrophysicsNational Astronomical Observatory of JapanMitakaJapan

Personalised recommendations