The Pulse Generator

  • Richard S. Sanders

A cardiac pulse generator is a device having a power source and electronic circuitry that produce output stimuli. Functionally, at its simplest, current sourced by the device’s battery travels through a connecting pathway to stimulate the heart and then flows back into the pacemaker to complete the circuit.


Pulse Width Pulse Generator Current Drain Charge Pump Slew Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Euler KJ. Electrochemical and radioactive power sources for cardiac pacemakers. In: Shaldach M, Furman S, eds. Advances in pacemaker technology. New York: Springer-Verlag, 1975:329–343.Google Scholar
  2. 2.
    Sanders RS, Lee MT. Implantable pacemakers. Proc IEEE 1996;84(3):480–486.CrossRefGoogle Scholar
  3. 3.
    Parsonnet V, Berstein AD, Perry GY. The nuclear pacemaker: is renewed interest warranted? Am J Cardiol 1990;66:837–842.CrossRefPubMedGoogle Scholar
  4. 4.
    Furman S, Garvey J, Hurzeler P. Pulse duration variation and electrode size as factors in pacemaker longevity. J Thorac Cardiovasc Surg 1975;69(3):382–389.PubMedGoogle Scholar
  5. 5.
    Tyers GFO, Brownlee RR. Power pulse generators, electrodes, and longevity. Prog Cardiovasc Dis 1981;23:421–434.CrossRefPubMedGoogle Scholar
  6. 6.
    Levine PA. Magnet rate and recommended replacement time and indicators of lithium pacemakers. Clin Prog Pacing Electrophysiol 1986;4:608–618.Google Scholar
  7. 7.
    Tyers GF. FDA recalls: how do pacemaker manufacturers compare? Ann Thorac Surg 1989;43(3):390–396.CrossRefGoogle Scholar
  8. 8.
    Sanders RS, Barold SS. Understanding elective replacement indicators and automatic parameter conversion mechanisms in DDD pacemakers. In: Barold SS, Mugica J, eds. New perspectives in cardiac pacing. Mount Kisco, NY: Futura Publishing, 1988.Google Scholar
  9. 9.
    Schuchert A, Kuck K-H. Influence of internal current and pacing current on pacemaker longevity. PACE 1994;17(1):13–16.PubMedGoogle Scholar
  10. 10.
    Intermedics Technical Manual. Relay DDDR pacing system. Angleton, TX: Intermedics, 1992.Google Scholar
  11. 11.
    Medtronic News. Winter 1986–1987:15.Google Scholar
  12. 12.
    Barold SS, Falkoff MD, Ong LS, et al. Resetting of DDD pulse generators due to cold exposure. PACE 1988;11:736–743.PubMedGoogle Scholar
  13. 13.
    Schroeppel EA. Current trends in cardiac pacing technology. Biomed Sci Technol 1992;1:90–102.PubMedGoogle Scholar
  14. 14.
    Marathon DDDR pacing system technical manual. Angleton, TX: Intermedics, 1996.Google Scholar
  15. 15.
    Furman S, Hurzeler P, DeCaprio V. Cardiac pacing and pacemakers: III. Sensing the cardiac electrogram. Am Heart J 1977;93:794–801.CrossRefPubMedGoogle Scholar
  16. 16.
    Barold SS, Ong LS, Heinle RA. Stimulation and sensing thresholds for cardiac pacing: electrophysiologic and technical aspects. Prog Cardiovasc Dis 1981;24:1–29.CrossRefPubMedGoogle Scholar
  17. 17.
    Platia EV, Brinker JA. Time course of transvenous pacemaker stimulation impedance, capture threshold, and electrogram amplitude. PACE 1986;9:620–625.PubMedGoogle Scholar
  18. 18.
    Levine PA. Why programmability? Indications for and clinical utility of multiparameter programmability. Sylmar, CA: Pacesetter Systems, 1981.Google Scholar
  19. 19.
    Halperin JL, Camunas JL, Stern EH, et al. Myopotential interference with DDD pacemakers: endocardial electrographic telemetry in the diagnosis of pacemaker-related arrhythmias. Am J Cardiol 1984;54:97–102.CrossRefPubMedGoogle Scholar
  20. 20.
    Irnich W. Muscle noise and interference behavior in pacemakers: a comparative study. PACE 1987;10:125–132.PubMedGoogle Scholar
  21. 21.
    Baker RG Jr, Falkenberg EN. Bipolar versus unipolar issues in DDD pacing (Part II). PACE 1984;7:1178–1182.PubMedGoogle Scholar
  22. 22.
    Belott PH, Sands S, Warren J. Resetting of DDD pacemakers due to EMI. PACE 1984;7:169–172.PubMedGoogle Scholar
  23. 23.
    Furman S, Hurzeler P, Parker B. Clinical thresholds of endocardial cardiac stimulation: a long-term study. J Surg Res 1975;19:149–155.CrossRefPubMedGoogle Scholar
  24. 24.
    Furman S, Hurzeler P, Mehra R. Cardiac pacing and pacemakers: IV. Threshold of cardiac stimulation. Am Heart J 1977;94:115–124.CrossRefPubMedGoogle Scholar
  25. 25.
    Tanaka S, Nanba T, Harada A, et al. Clinical experience with telemetry pacing systems and long-term follow-up: clinical aspects of lead impedance and battery life. PACE 1983;6:A30–A110.Google Scholar
  26. 26.
    Hill WE, Murray A, Bourke JP, et al. Minimum energy for cardiac pacing. Clin Phys Physiol Meas 1988;9(1):41–46.CrossRefPubMedGoogle Scholar
  27. 27.
    Irnich W. The chronaxie time and its practical importance. PACE 1980;3:292–301.PubMedGoogle Scholar
  28. 28.
    Kay GN. Basic concepts of pacing. In: Ellenbogen KA, ed. Cardiac pacing, 2nd ed. Boston, MA: Blackwell Science, 1996:37–123.Google Scholar
  29. 29.
    Furman S, Parker B, Escher DJW, et al. Endocardial threshold of cardiac response as a function of electrode surface area. J Surg Res 1968;8(4):161–166.CrossRefPubMedGoogle Scholar
  30. 30.
    Stokes K, Bornzin G. The electrode-biointerface: stimulation. In: Barold SS, ed. Modern cardiac pacing. Mount Kisco, NY: Futura Publishing, 1985:37–77.Google Scholar
  31. 31.
    Mugica J. Progress and development of cardiac pacing electrodes (Part I). PACE 1990;13:1558.PubMedGoogle Scholar
  32. 32.
    Timmis GC, Westveer DC, Holland J, et al. Precision of pacemaker thresholds: the Wedensky effect. PACE 1983;6:A60–A220.Google Scholar
  33. 33.
    Sholder J, Levine PA, Mann BM, et al. Bidirectional telemetry and interrogation in cardiac pacing. In Barold SS, Mugica J, eds. The third decade of cardiac pacing: Advances in technology and Clinical Applications. Mt. Kisco, NY: Futura Publishing, 1982:145–166.Google Scholar
  34. 34.
    Sanders RS, Levine PA, Markowitz HT. Pacemaker diagnostics: measured data, event marker, electrogram, and event counter telemetry. In: Ellenbogen KS, Kay N, Wikoff B, eds. Clinical cardiac pacing. Philadelphia: WB Saunders, 1995:639–655.Google Scholar
  35. 35.
    Castellanet MJ, Garza J, Shaner SP, et al. Telemetry of programmed and measured data in pacing system evaluation and follow-up. J Electrophysiol 1987;1:360–375.CrossRefGoogle Scholar
  36. 36.
    Phillips R, Frey M, Martin RO. Long-term performance of polyurethane pacing leads: mechanisms of design-related failures (Part II). PACE 1986;9:1166–1172.PubMedGoogle Scholar
  37. 37.
    Furman S, Benedek ZM. The implantable lead registry. Survival of implantable pacemaker leads (Part II). PACE 1990;13:1910–1914.PubMedGoogle Scholar
  38. 38.
    Clarke M, Allen A. Early detection of lead insulation breakdown. PACE 1985;8:775.Google Scholar
  39. 39.
    Schmidinger H, Mayer H, Kaliman J, et al. Early detection of lead complications by telemetric measurement of lead impedance. PACE 1985;8:A23–A90.Google Scholar
  40. 40.
    Winokur P, Falkenberg E, Gerard G. Lead resistance telemetry: insulation failure prognosticator. PACE 1985;8:A85–A339.Google Scholar
  41. 41.
    Pulsar technical manual. St. Paul, MN: Guidant Corp, 1999.Google Scholar
  42. 42.
    Sanders R, Martin R, Frumin H, et al. Data storage and retrieval by implantable pacemakers for diagnostic purposes. PACE 1984;7:1228–1233.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard S. Sanders
    • 1
  1. 1.VP Sales and MarketingCameron Health, Inc.San ClementeUSA

Personalised recommendations