Cardiac Device Therapy in Children

  • George F. Van Hare

It is ironic that the first transistorized, wearable pacemaker was designed by Earl Bakken specifically to make open heart surgery in children possible (1). Despite their pediatric origins, however, current heart rhythm control devices and leads are not designed or manufactured for children. Instead, they are designed with adults in mind, with respect to device size and lead length, as well as to the indications that prompt pacemaker implantation in adults. For this reason, the clinician who implants pacemakers in children and who follows such children must adapt the technology to the unique requirements of children. These requirements include the need for small size, but they also include flexibility in programmability, to take into account potentially higher levels of activity, higher natural heart rates, and the wide spectrum of problems encountered with congenital heart disease.


Congenital Heart Disease Subclavian Vein Fontan Procedure Sinus Node Dysfunction Lead Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lillehei CW, Gott VL, Hodges PC, Jr., Long DM, Bakken EE. Transitor pacemaker for treatment of complete atrioventricular dissociation. JAMA 1960;172:2006–10.Google Scholar
  2. 2.
    Gregoratos G, Abrams J, Epstein AE, et al. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). J Cardiovasc Electrophysiol 2002;13:1183–99.CrossRefGoogle Scholar
  3. 3.
    Lewis AB, Lindesmith GG, Takahashi M, et al. Cardiac rhythm following the Mustard procedure for transposition of the great vessels. J Thorac Cardiovasc Surg 1977;73:919–26.PubMedGoogle Scholar
  4. 4.
    Bharati S, Molthan ME, Veasy LG, Lev M. Conduction system in two cases of sudden death two years after the Mustard procedure. J Thorac Cardiovasc Surg 1979;77:101–8.PubMedGoogle Scholar
  5. 5.
    Saalouke MG, Rios J, Perry LW, Shapiro SR, Scott LP. Electrophysiologic studies after mustard’s operation for d- transposition of the great vessels. Am J Cardiol 1978;41:1104–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Flinn CJ, Wolff GS, Dick M, et al. Cardiac rhythm after the Mustard operation for complete transposition of the great arteries. N Engl J Med 1984;310:1635–8.PubMedGoogle Scholar
  7. 7.
    Cohen MI, Wernovsky G, Vetter VL, et al. Sinus node function after a systematically staged Fontan procedure. Circulation 1998;98:II-352–8.Google Scholar
  8. 8.
    Kalman JM, VanHare GF, Olgin JE, Saxon LA, Stark SI, Lesh MD. Ablation of ‘incisional’ reentrant atrial tachycardia complicating surgery for congenital heart disease. Use of entrainment to define a critical isthmus of conduction. Circulation 1996;93:502–12.PubMedGoogle Scholar
  9. 9.
    Garson A, Jr. Medicolegal problems in the management of cardiac arrhythmias in children. Pediatrics 1987;79:84–8.PubMedGoogle Scholar
  10. 10.
    Ho SY, Gerlis LM, Toms J, Lincoln C, Anderson RH. Morphology of the posterior junctional area in atrioventricular septal defects. Ann Thorac Surg 1992;54:264–70.PubMedGoogle Scholar
  11. 11.
    Anderson RH, Wilcox BR. The surgical anatomy of ventricular septal defect. J Card Surg 1992;7:17–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Goldman BS, Williams WG, Hill T, et al. Permanent cardiac pacing after open heart surgery: congenital heart disease. Pacing Clin Electrophysiol 1985;8:732–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Bonatti V, Agnetti A, Squarcia U. Early and late postoperative complete heart block in pediatric patients submitted to open-heart surgery for congenital heart disease. Pediatr Med Chir 1998;20:181–6.PubMedGoogle Scholar
  14. 14.
    Kuribayashi R, Sekine S, Aida H, et al. Long-term results of primary closure for ventricular septal defects in the first year of life. Surg Today 1994;24:389–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Vetter VL, Horowitz LN. Electrophysiologic residua and sequelae of surgery for congenital heart defects. Am J Cardiol 1982;50:588–604.CrossRefPubMedGoogle Scholar
  16. 16.
    Weindling SN, Saul JP, Gamble WJ, Mayer JE, Wessel D, Walsh EP. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol 1998;82:525–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Yabek SM, Jarmakani JM, Roberts NK. Diagnosis of trifasicular damage following tetralogy of fallot and ventricular septal defect repair. Circulation 1977;55:23–7.PubMedGoogle Scholar
  18. 18.
    Chameides L, Truex RC, Vetter V, Rashkind WJ, Galioto FM, Jr., Noonan JA. Association of maternal systemic lupus erythematosus with congenital complete heart block. N Engl J Med 1977;297:1204–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Litsey SE, Noonan JA, O’Connor WN, Cottrill CM, Mitchell B. Maternal connective tissue disease and congenital heart block. Demonstration of immunoglobulin in cardiac tissue. N Engl J Med 1985;312:98–100.PubMedCrossRefGoogle Scholar
  20. 20.
    Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999;104:1567–73.CrossRefGoogle Scholar
  21. 21.
    Geggel RL, Tucker L, Szer I. Postnatal progression from second- to third-degree heart block in neonatal lupus syndrome. J Pediatr 1988;113:1049–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Dewey RC, Capeless MA, Levy AM. Use of ambulatory electrocardiographic monitoring to identify high-risk patients with congenital complete heart block. N Engl J Med 1987;316:835–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Michaelsson M, Jonzon A, Riesenfeld T. Isolated congenital complete atrioventricular block in adult life. A prospective study. Circulation 1995;92:442–9.PubMedGoogle Scholar
  24. 24.
    Rosenthal E, Qureshi SA, Crick JC. Successful long-term ventricular pacing via the coronary sinus after the Fontan operation. Pacing Clin Electrophysiol 1995;18:2103–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Gillette PC, Zeigler VL, Winslow AT, Kratz JM. Cardiac pacing in neonates, infants, and preschool children. Pacing Clin Electrophysiol 1992;15:2046–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Figa FH, McCrindle BW, Bigras JL, Hamilton RM, Gow RM. Risk factors for venous obstruction in children with transvenous pacing leads. Pacing Clin Electrophysiol 1997;20:1902–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Gammage MD, Lieberman RA, Yee R, et al. Multi-center clinical experience with a lumenless, catheter-delivered, bipolar, permanent pacemaker lead: implant safety and electrical performance. Pacing Clin Electrophysiol 2006;29:858–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Cutler NG, Karpawich PP, Cavitt D, Hakimi M, Walters HL. Steroid-eluting epicardial pacing electrodes: six year experience of pacing thresholds in a growing pediatric population. Pacing Clin Electrophysiol 1997;20:2943–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Beaufort-Krol GC, Mulder H, Nagelkerke D, Waterbolk TW, Bink-Boelkens MT. Comparison of longevity, pacing, and sensing characteristics of steroid-eluting epicardial versus conventional endocardial pacing leads in children. J Thorac Cardiovasc Surg 1999;117:523–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Tang C, Yeung-Lai-Wah JA, Qi A, Mills P, Clark J, Tyers F. Initial experience with a co-radial bipolar pacing lead. Pacing Clin Electrophysiol 1997;20:1800–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Ellenbogen KA, Wood MA, Gilligan DM, Zmijewski M, Mans D. Steroid eluting high impedance pacing leads decrease short and long-term current drain: results from a multicenter clinical trial. CapSure Z investigators. Pacing Clin Electrophysiol 1999;22:39–48.CrossRefPubMedGoogle Scholar
  32. 32.
    Crossley GH, Brinker JA, Reynolds D, et al. Steroid elution improves the stimulation threshold in an active-fixation atrial permanent pacing lead. A randomized, controlled study. Model 4068 Investigators. Circulation 1995;92:2935–9.Google Scholar
  33. 33.
    Smith HJ, Fearnot NE, Byrd CL, Wilkoff BL, Love CJ, Sellers TD. Five-years experience with intravascular lead extraction. U.S. Lead Extraction Database. Pacing Clin Electrophysiol 1994;17:2016–20.CrossRefGoogle Scholar
  34. 34.
    Wilkoff BL, Byrd CL, Love CJ, et al. Pacemaker lead extraction with the laser sheath: results of the pacing lead extraction with the excimer sheath (PLEXES) trial. J Am Coll Cardiol 1999;33:1671–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Friedman RA, Van Zandt H, Collins E, LeGras M, Perry J. Lead extraction in young patients with and without congenital heart disease using the subclavian approach. Pacing Clin Electrophysiol 1996;19:778–83.CrossRefPubMedGoogle Scholar
  36. 36.
    Ott DA, Gillette PC, Cooley DA. Atrial pacing via the subxyphoid approach. Texas Heart Inst J 1982;9:149–52.Google Scholar
  37. 37.
    Salim MA, DiSessa TG, Watson DC. The wandering pacemaker: intraperitoneal migration of an epicardially placed pacemaker and femoral nerve stimulation. Pediatr Cardiol 1999;20:164–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Horenstein MS, Hakimi M, Walters H, 3rd, Karpawich PP. Chronic performance of steroid-eluting epicardial leads in a growing pediatric population: a 10-year comparison. Pacing Clin Electrophysiol 2003;26:1467–71.CrossRefPubMedGoogle Scholar
  39. 39.
    Magney JE, Flynn DM, Parsons JA, et al. Anatomical mechanisms explaining damage to pacemaker leads, defibrillator leads, and failure of central venous catheters adjacent to the sternoclavicular joint. Pacing Clin Electrophysiol 1993;16:445–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Jacobs DM, Fink AS, Miller RP, et al. Anatomical and morphological evaluation of pacemaker lead compression. Pacing Clin Electrophysiol 1993;16:434–44.CrossRefPubMedGoogle Scholar
  41. 41.
    Spencer WH, 3rd, Zhu DW, Kirkpatrick C, Killip D, Durand JB. Subclavian venogram as a guide to lead implantation. Pacing Clin Electrophysiol 1998;21:499–502.CrossRefPubMedGoogle Scholar
  42. 42.
    Stark J, Tynan MJ, Ashcraft KW, Aberdeen E, Waterston DJ. Obstruction of pulmonary veins and superior vena cava after the Mustard operation for transposition of the great arteries. Circulation 1972;45:I116–20.PubMedGoogle Scholar
  43. 43.
    Fishberger SB, Camunas J, Rodriguez-Fernandez H, Sommer RJ. Permanent pacemaker lead implantation via the transhepatic route. Pacing Clin Electrophysiol 1996;19:1124–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Bu’Lock FA, Tometzki AJ, Kitchiner DJ, Arnold R, Peart I, Walsh KP. Balloon expandable stents for systemic venous pathway stenosis late after Mustard’s operation. Heart 1998;79:225–9.PubMedGoogle Scholar
  45. 45.
    Gillette PC, Wampler DG, Shannon C, Ott D. Use of cardiac pacing after the Mustard operation for transposition of the great arteries. J Am Coll Cardiol 1986;7:138–41.PubMedCrossRefGoogle Scholar
  46. 46.
    Huhta JC, Maloney JD, Ritter DG, Ilstrup DM, Feldt RH. Complete atrioventricular block in patients with atrioventricular discordance. Circulation 1983;67:1374–7.PubMedGoogle Scholar
  47. 47.
    Snider AR, Ports TA, Silverman NH. Venous anomalies of the coronary sinus: detection by M-mode, two-dimensional and contrast echocardiography. Circulation 1979;60:721–7.PubMedGoogle Scholar
  48. 48.
    Dubin AM, Berul CI, Bevilacqua LM, et al. The use of implantable cardioverter-defibrillators in pediatric patients awaiting heart transplantation. J Card Fail 2003;9:375–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Kammeraad JA, van Deurzen CH, Sreeram N, et al. Predictors of sudden cardiac death after Mustard or Senning repair for transposition of the great arteries. J Am Coll Cardiol 2004;44:1095–102.CrossRefPubMedGoogle Scholar
  50. 50.
    Harrison DA, Harris L, Siu SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol 1997;30:1368–73.CrossRefPubMedGoogle Scholar
  51. 51.
    Cooper JM, Stephenson EA, Berul CI, Walsh EP, Epstein LM. Implantable cardioverter defibrillator lead complications and laser extraction in children and young adults with congenital heart disease: implications for implantation and management. J Cardiovasc Electrophysiol 2003;14:344–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Stephenson EA, Batra AS, Knilans TK, et al. A multicenter experience with novel implantable cardioverter defibrillator configurations in the pediatric and congenital heart disease population. J Cardiovasc Electrophysiol 2006;17:41–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Dubin AM, Janousek J, Rhee E, et al. Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study. J Am Coll Cardiol 2005;46:2277–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • George F. Van Hare
    • 1
  1. 1.Pediatric CardiologyStanford UniversityPalo AltoUSA

Personalised recommendations