Skip to main content

Pacing Leads

  • Chapter

The cardiac pacemaker lead is a relatively fragile cable of insulated conductor wire implanted into the hostile environment of the human body. Its function is to interface the power source and sophisticated electronics of the pulse generator with the heart. The pacemaker lead plays a critical role in delivering both the output pulse from the pulse generator to the myocardium and the intracardiac electrogram from the myocardium to the sensing circuit of the pulse generator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mond H, Irwin M, Morillo C et al.: The World survey of cardiac pacing and cardioverter defibrillators: Calendar year 2001. PACE 2004; 27:955–964.

    PubMed  Google Scholar 

  2. Mond HG: Unipolar versus bipolar pacing - Poles apart. PACE 1991; 14:1411–1424.

    CAS  PubMed  Google Scholar 

  3. Griffin JC: Sensing characteristics of the right atrial appendage electrode. PACE 1983; 6:22–25.

    CAS  PubMed  Google Scholar 

  4. Mond H. and Barold SS: Dual chamber, rate-adaptive pacing in patients with paroxysmal supraventricular tachyarrhythmias: Protective measures for rate control. PACE 1993; 16:2168–2185.

    CAS  PubMed  Google Scholar 

  5. Mymin D, Cuddy TE, Sinha SN, et al.: Inhibition of demand pacemakers by skeletal muscle potentials. JAMA 1973; 223:527–532.

    Article  Google Scholar 

  6. Cameron J, Ciddor G, Mond H, et al.: Stiffness of the distal tip of bipolar pacemaker leads. PACE 1990: 13;1915–1920.

    CAS  PubMed  Google Scholar 

  7. Kistler PM, Eizenberg N, Fynn SP et al.: The subpectoral pacemaker implant: It isn’t what it seems! PACE 2004; 27:361–364.

    PubMed  Google Scholar 

  8. Weiss DN, Zilo P, Luceri RM et al.: Should unipolar pacemaker leads be banned? Lessons from pacemaker/implantable cardioverter defibrillator interactions. PACE 1997; 20:237–239.

    CAS  PubMed  Google Scholar 

  9. Mond H: The Cardiac Pacemaker. Function and Malfunction. New York: Grune and Stratton, 1973, pp. 60–66.

    Google Scholar 

  10. Schuchert A and Kuck KH: Influence of internal current and pacing current on pacemaker longevity. PACE 1994; 17:13–16.

    CAS  PubMed  Google Scholar 

  11. Ellenbogen KA, Wood MA, Gilligan DM, et al.: Steroid eluting high impedance pacing leads decrease short and long term current drain: Results from a multicenter clinical trial. PACE 1999; 22:39–48.

    CAS  PubMed  Google Scholar 

  12. Parsonnet V, Gilbert L, Lewin G et al.: A non polarizing electrode for endocardial stimulation of the heart. J Thorac Cardiovasc Serg. 1968; 56:710–715.

    CAS  Google Scholar 

  13. Schaldach M, Hubman M, Weikl A, et al.: Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. PACE 1990; 13:1891–1895.

    CAS  PubMed  Google Scholar 

  14. Elmqvist H, Schueller H, Richter G: The carbon tip electrode. PACE 1983; 6:436–439.

    CAS  PubMed  Google Scholar 

  15. Moracchini PV, Cappelletti F, Melandri PF, et al.: Titanium oxide tip electrode, A solution to minimize polarization and threshold increase (Abstract). PACE 1985; 8:A–85.

    Google Scholar 

  16. Schaldach M, Hubman M, Weikl A, et al.: Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. PACE 1990; 13:1891–1895.

    CAS  PubMed  Google Scholar 

  17. Tang C, Yeung-Lai-Wah JA, Qi A, et al.: Initial experience with a co-radial bipolar pacing lead. PACE 1997; 20:1800–1807.

    CAS  PubMed  Google Scholar 

  18. DelBufalo AGA, Schlaepfer J, Fromer M et al.: Acute and long-term ventricular stimulation thresholds with a new, Iridium oxide-coated electrode. PACE 1993; 16:1240–1244.

    CAS  Google Scholar 

  19. Mond H and Stokes KB: The electrode–tissue interface: the revolutionary role of steroid elution. PACE 1992; 15:95–107.

    CAS  PubMed  Google Scholar 

  20. Sibille Y and Reynolds H: Macrophages and polymorphonuclear neutrophils in lung defence and injury. Am Rev Respir Dis 1990; 41:471–501.

    Google Scholar 

  21. Guerola M and Lindegren U: Clinical evaluation of membrane-coated 3, 5 mm2 porous titanium nitride electrodes. In Aubert AE, Ector H and Stroobandt R (eds). Euro-pace’93 Monduzzi Editore, 1993, pp. 447–450.

    Google Scholar 

  22. Stokes K, Bornzin G: The electrode - biointerface: Stimulation. In Barold SS (ed). Modern Cardiac Pacing. New York: Futura Publishing, 1985, pp. 33–77.

    Google Scholar 

  23. Brewer G, McAuslan BR, Skalsky M, et al.: Initial screening of bio-active agents with potential to reduce stimulation threshold (Abstract). PACE 1988; 11:509.

    Google Scholar 

  24. Kruse IM: Long-term performance of endocardial leads with steroid-eluting electrodes. PACE 1986; 9:1217–1219.

    CAS  PubMed  Google Scholar 

  25. Mond HG: Development of low stimulation-threshold, low-polarization electrodes. In: New Perspectives in Cardiac Pacing. 2. Barold SS and Mugica J (eds). Mount Kisco, NY: Futura Publishing Company, Inc., 1991, P133–162.

    Google Scholar 

  26. Pioger G: Low surface area electrodes: comparison between Synox 60 BP (1.3 mm2), Capsure Z 5034 (1.2 mm2) and Stela BT26 (2 mm2):158 cases (Abstract). PACE 1997; 20:1443.

    Google Scholar 

  27. Hua W, Mond HG, and Strathmore N: Chronic steroid eluting lead performance: A comparison of atrial and ventricular pacing. PACE 1997; 20:17–24.

    CAS  PubMed  Google Scholar 

  28. Till JA, Jones S, Rowland E, et al.: Clinical experience with a steroid eluting lead in children. Circulation 1989; 80:II–389.

    Google Scholar 

  29. Stokes K, Church T: The elimination of exit block as a pacing complication using a transvenous steroid eluting lead (Abstract). PACE 1987; 10:748.

    Google Scholar 

  30. Hiller K, Rothschild JM, Fudge W et al.: A randomized comparison of a bipolar steroid-eluting lead and a bipolar porous platinum coated titanium lead (Abstract). PACE 1991; 14:695.

    Google Scholar 

  31. Mond HG, Hua W and Wang CC: Atrial pacing leads: the clinical contribution of steroid elution. PACE 1995; 18:1601–1608.

    CAS  PubMed  Google Scholar 

  32. Hua W, Mond H and Sparks P: The clinical performance of three designs of atrial pacing leads from a single manufacturer: the value of steroid elution. Eur J.C.P.E 1996; 6:99–103.

    Google Scholar 

  33. Stokes KB: Preliminary studies on a new steroid eluting epicardial electrode. PACE 1988; 11:1797–1803.

    CAS  PubMed  Google Scholar 

  34. Karpawich PP, Hakimi M, Arciniegas E: Improved chronic epicardial pacing in children: Steroid contribution to porous platinised electrodes. PACE 1992; 15:1151–1157.

    CAS  PubMed  Google Scholar 

  35. Mathivanar R, Anderson N, Harman D et al.: In vivo elution of drug eluting ceramic leads with a reduced dose of dexamethasone sodium phosphate. PACE 1990; 13:1883–1886.

    CAS  PubMed  Google Scholar 

  36. Schuchert A, Kuck KH: Benefits of smaller electrode surface area (4 mm2) on steroid eluting leads. PACE 1991; 14:2098–2104.

    CAS  PubMed  Google Scholar 

  37. Kistler PM, Liew G and Mond HG: Long-term performance of active-fixation pacing leads: a prospective study. PACE 2006; 29:226–230.

    PubMed  Google Scholar 

  38. Kistler PM, Kalman JM, Fynn SP et al.: Rapid decline in acute stimulation thresholds with steroid-eluting active fixation pacing leads. PACE 2005; 28:903–909.

    PubMed  Google Scholar 

  39. Anderson N, Mathivanar R, Skalsky M et al.: Active fixation leads–long term threshold reduction using a drug-infused ceramic collar. PACE 2004; 14:1767–1771.

    Google Scholar 

  40. Singarayar S, Kistler PM, DeWinter C et al.: A comparative study of the action of dexamethasone sodium phosphate and dexamethasone acetate in steroid-eluting pacemaker leads. PACE 2005; 28:311–315.

    PubMed  Google Scholar 

  41. Bergdahl L: Helifix, an electrode suitable for transvenous and ventricular implantation. J Thorac Cardiovasc Surg 1980; 80:794–799.

    CAS  PubMed  Google Scholar 

  42. Sloman JG, Mond HG, Bailey B et al.: The use of balloon-tipped electrodes for permanent cardiac pacing. PACE 1979; 2:579–585.

    CAS  PubMed  Google Scholar 

  43. Mond H and Sloman G: The small-tined pacemaker lead–Absence of dislodgement. PACE 1980; 3:171–177.

    CAS  PubMed  Google Scholar 

  44. Gammage MD, Swoyer J, Moes R et al.: Initial experience with a new design parallel conductor, high impedance, steroid-eluting bipolar pacing lead (Abstract). PACE 1997; 20:1229.

    Google Scholar 

  45. Tang C, Yeung-Lai-Wah JA, Qi A, et al.: Initial experience with a co-radial bipolar pacing lead. PACE 1997; 20:1800–1807.

    CAS  PubMed  Google Scholar 

  46. Byrd CL, McArthur W, Stokes K et al.: Implant experience with unipolar pacing leads. PACE 1983; 6:868–882.

    Google Scholar 

  47. Scheuer-Leeser M, Irnich W, Kreuzer J: Polyurethane leads: facts and controversy. PACE 1983; 6:454–458.

    CAS  PubMed  Google Scholar 

  48. Timmis GC, Westveer DC, Martin R et al.: The significance of surface changes on explanted polyurethane pacemaker leads. PACE 1983; 6:845–857.

    CAS  PubMed  Google Scholar 

  49. Stokes K, Urbanski P, Upton J: The in vivo auto-oxidation of polyether polyurethanes by metal ions. J Biomatr Sc, Polym 1990; 1:207.

    Article  CAS  Google Scholar 

  50. Medtronic family of Novus® Leads. Medtronic, Minneapolis, MN.

    Google Scholar 

  51. Morgan K, Bornzin GA, Florio J et al.: A new single pass DDD lead (Abstract). PACE 1997; 20:1211.

    Google Scholar 

  52. Hirschberg J, Ekwall C and Bowald S: DDD pacemaker system with single lead (SLDDD) reduces intravascular hardware. Long-term experimental study (Abstract). PACE 1996; 19:601.

    Google Scholar 

  53. DiGregorio F, Morra A, Bongiorni M et al.: A multicenter experience in DDD pacing with single-pass lead (Abstract). PACE 1997; 20:1210.

    Google Scholar 

  54. Hartung WM, Strobel JP, Taskiran M, et al.: “Overlapping bipolar impulse”–Stimulation using a single lead implantable pacemaker system first results (Abstract). PACE 1996; 19:601.

    Google Scholar 

  55. Lucchese F, Halperin C, Strobel J et al.: Single lead DDD pacing with overlapping biphasic atrial stimulation–First clinical results (Abstract). PACE 1996; 19:601.

    Google Scholar 

  56. Vohra J, Hamer A, Mond H, Sloman G, Hunt D: Patient initiated implantable pacemakers for paroxysmal supraventricular tachycardia. Aust N Z J Med 1981; 11:27–34.

    CAS  PubMed  Google Scholar 

  57. Leclercq C, Cazeau S, Le Breton H et al.: Acute hemodynamic effects of biventricular DDD pacing in patients with end-stage heart failure. JACC 1998; 32:1825–1831.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mond, H.G. (2008). Pacing Leads. In: Kusumoto, F.M., Goldschlager, N.F. (eds) Cardiac Pacing for the Clinician. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72763-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72763-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72762-2

  • Online ISBN: 978-0-387-72763-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics