The Biochemistry of Family Commitment and Youth Competence: Lessons from Animal Models

  • Larry J. Young
  • Darlene D. Francis
Part of the The Search Institute Series on Developmentally Attentive Community and Society book series (SISS, volume 5)


Conditioned Place Preference Maternal Care Maternal Behavior Oxytocin Receptor Prairie Vole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bale, T. L., Davis, A. M., Auger, A. P., Dorsa, D. M., & McCarthy, M. M. (2001). CNS region–specific oxytocin receptor expression: Importance in regulation of anxiety and sex behavior. Journal of Neuroscience, 21, 2546–2552.PubMedGoogle Scholar
  2. Bridges, R. S. (1984). A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology, 114, 930–940.PubMedCrossRefGoogle Scholar
  3. Bridges, R. S., Numan, M., Ronsheim, P. M., Mann, P. E., & Lupini, C. E. (1990). Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proceedings of the National Academy of Sciences USA, 87, 8003–8007.CrossRefGoogle Scholar
  4. Bridges, R. S., Robertson, M. C., Shiu, R. P. C., Sturgis, J. J., Henriquez, B. M., & Mann, P. E. (1997). Central lactogenic regulation of maternal behavior in rats: Steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen I. Endocrinology, 138, 756–763.PubMedCrossRefGoogle Scholar
  5. Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., & Plotsky, P. M. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of behavioral fearfulness in adulthood in the rat. Proceedings of the National Academy of Sciences USA, 95, 5335–5340.CrossRefGoogle Scholar
  6. Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23, 779–818.PubMedCrossRefGoogle Scholar
  7. Carter, C. S., & Getz, L. L. (1993). Monogamy and the prairie vole. Scientific American, 268, 100–106.PubMedCrossRefGoogle Scholar
  8. Champagne, F, Diorio, J., Sharma, S., & Meaney, M. J. (2001). Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proceedings of the National Academy of Sciences USA, 98, 12736–12741.CrossRefGoogle Scholar
  9. Cho, M .M., DeVries, A. C., Williams, J. R., & Carter, C. S. (1999). The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behavioral Neuroscience, 113, 1071–1079.PubMedCrossRefGoogle Scholar
  10. DeVries, G. J. (1990). Sex differences in the brain. Journal of Neuroendocrinology, 2, 1–13.CrossRefGoogle Scholar
  11. Dixson, A. F., & George, L. (1982). Prolactin and parental behaviour in a male New World primate. Nature, 299, 551–553.PubMedCrossRefGoogle Scholar
  12. Englemann, M., & Landgraf, R. (1994). Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiology and Behavior, 55, 145–149.CrossRefGoogle Scholar
  13. Ferguson, J. N., Young, L. J., Hearn, E. F., Insel, T. R., & Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288.PubMedCrossRefGoogle Scholar
  14. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Variations in maternal care form the basis for a non-genomic mechanism of inter-generational transmission of individual differences in behavioral and endocrine responses to stress Science, 286, 1155–1158.PubMedCrossRefGoogle Scholar
  15. Francis, D. D., Young, L. J., Meaney, M. J., & Insel, T. R. (2002). Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: Gender differences. Journal of Neuroendocrinology, 14, 349–353.PubMedCrossRefGoogle Scholar
  16. Gainer, H., & Wray, W. (1994). Cellular and molecular biology of oxytocin and vasopressin. In E. Knobil & J. D. Neill (Eds.), The physiology of reproduction (pp. 1099–1129). New York: Raven Press.Google Scholar
  17. Gong, W., Neill, D., & Justice, J. B. (1996). Conditioned place preference and locomotor activation produced by injection of psychostimulants in ventral pallidum. Brain Research, 707, 64–74.PubMedCrossRefGoogle Scholar
  18. Heim, C., Newport, J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592–597.PubMedCrossRefGoogle Scholar
  19. Insel, T. R., & Harbaugh, C. R. (1989). Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiology and Behavior, 45, 1033–1041.PubMedCrossRefGoogle Scholar
  20. Insel, T. R., & Hulihan, T. (1995). A gender-specific mechanism for pair bonding: Oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782-789.PubMedCrossRefGoogle Scholar
  21. Insel, T. R., Preston, S., & Winslow, J. T. (1995). Mating in the monogamous male: Behavioral consequences. Physiology and Behavior, 57, 615–627.PubMedCrossRefGoogle Scholar
  22. Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences USA, 89, 5981–5985.CrossRefGoogle Scholar
  23. Insel, T. R., Wang, Z., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. Journal of Neuroscience, 14, 5381–5392.PubMedGoogle Scholar
  24. Insel, T. R., & Young, L. J. (2001). Neurobiology of social attachment. Nature Neuroscience, 2, 129–136.CrossRefGoogle Scholar
  25. Jannett, F. J. (1980). Social dynamics of the montane vole Microtus montanus, as a paradigm. Biologist, 62, 3–19.Google Scholar
  26. Kendrick, K. M., Costa, A. P. C. D., Broad, K. D., Ohkura, S., Guevara, R., Levy, F., et al. (1997). Neural control of maternal behavior and olfactory recognition of offspring. Brain Research Bulletin, 44, 383–395.PubMedCrossRefGoogle Scholar
  27. Kendrick, K. M., Keverne, E. B., & Baldwin, B. A. (1987). Intracerebroventricular oxytocin stimulates maternal behaviour in sheep. Neuroendocrinology, 46, 56–61.PubMedGoogle Scholar
  28. Ladd, C. O., Owens, M. J., & Nemeroff, C. B. (1996). Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology, 137, 1212–1218.PubMedCrossRefGoogle Scholar
  29. Liu, D., Caldji, C., Sharma, S., Plotsky, P. M., & Meaney, M. J. (2000). Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. Journal of Neuroendocrinology, 12, 5–12.PubMedCrossRefGoogle Scholar
  30. Liu, D., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., et al. (1997). Maternal care, hippocampal glucocorticoid receptro gene expression and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.PubMedCrossRefGoogle Scholar
  31. Lucas, B. K., Ormandy, C. J., Binart, N., Bridges, R. S., & Kelly, P. A. (1998). Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology, 139, 4102–4107.PubMedCrossRefGoogle Scholar
  32. McBride, W. J., Murphy, J. M., & Ikemoto, S. (1999). Localization of brain reinforcement mechanims: Intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research, 101, 129–152.PubMedCrossRefGoogle Scholar
  33. Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 49–72.PubMedCrossRefGoogle Scholar
  34. Pedersen, C. A., Caldwell, J. D., Walker, C., Ayers, G., & Mason, G. A. (1994). Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic area. Behavioral Neuroscience, 108, 1163–1171.PubMedCrossRefGoogle Scholar
  35. Pedersen, C. A., & Prange, A. J. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences USA, 76, 6661–6665.CrossRefGoogle Scholar
  36. Pitkow, L. J., Sharer, C. A., Ren, X., Insel, T. R., Terwilliger, E. F., & Young, L. J. (2001). Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. Journal of Neuroscience, 21, 7392–7396.PubMedGoogle Scholar
  37. Plotsky, P., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research, 18, 195–200.PubMedCrossRefGoogle Scholar
  38. Russek, L., & Schwartz, G. E. (1997). Feelings of parental caring predict health status in midlife: A 35-year follow-up of the Harvard Mastery of Stress Study. Journal of Behavioral Medicine, 20, 1–13.PubMedCrossRefGoogle Scholar
  39. Terkel, J., & Rosenblatt, J. S. (1972). Humoral factors underlying maternal behavior at parturition: Cross transfusion between freely moving rats. Journal of Comparative Physiology and Psychology, 80, 365–371.CrossRefGoogle Scholar
  40. Wang, Z., Ferris, C. F., & DeVries, G. J. (1994). Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proceedings of the National Academy of Sciences USA, 91, 400–404.CrossRefGoogle Scholar
  41. Williams, J., Catania, K., & Carter, C. (1992). Development of partner preferences in female prairie voles (Microtus ochrogaster): The role of social and sexual experience. Hormones and Behavior, 26, 339–349.Google Scholar
  42. Williams, J. R., Insel, T. R., Harbaugh, C. R., & Carter, C. S. (1994). Oxytocin administered centrally facilitates formation of a partner preference in prairie voles (Microtus ochrogaster). Journal of Neuroendocrinology, 6, 247–250.PubMedCrossRefGoogle Scholar
  43. Winslow, J., Hastings, N., Carter, C. S., Harbaugh, C., & Insel, T. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.PubMedCrossRefGoogle Scholar
  44. Witt, D. M., Winslow, J. T., & Insel, T. R. (1992). Enhanced social interactions in rats following chronic, centrally infused oxytocin. Pharmacology Biochemistry and Behavior, 43, 855–861.CrossRefGoogle Scholar
  45. Young, L. J., & Insel, T. R. (2002). Hormones and parental behavior. In J. B. Becker, S. M. Breedlove, and D. Crews, Behavioral endocrinology (2nd ed., pp. 331–368). Cambridge, MA: MIT Press.Google Scholar
  46. Young, L. J., Lim, M. M., Gingrich, B., & Insel, T.R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.PubMedCrossRefGoogle Scholar
  47. Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R.., & Insel, T. R. (1999). Increased affiliative response to vasopressin in mice expressing the vasopressin receptor from a monogamous vole. Nature, 400, 766–768.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Larry J. Young
    • 1
  • Darlene D. Francis
    • 2
  1. 1.Emory University School of MedicineAtlanta
  2. 2.University of CaliforniaBerkeley

Personalised recommendations