The Psychobiology of Adolescence

  • Linda Patia Spear
Part of the The Search Institute Series on Developmentally Attentive Community and Society book series (SISS, volume 5)


Prefrontal Cortex Risk Taking Adolescent Behavior Postnatal Development Forebrain Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriani, W., Chiarotti, F., & Laviola, G. (1998). Elevated novelty seeking and peculiar d-amphetamine sensitization in periadolescent mice compared with adult mice. Behavioral Neuroscience, 112, 1152–1166.PubMedCrossRefGoogle Scholar
  2. Akbarian, S., Bunney, W. E., Jr., Potkin, S. G., Wigal, S. B., Hagman, J. O., Sandman, C. A., et al. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50, 169–177.PubMedGoogle Scholar
  3. Alföldi, P., Tobler, I., & Borbély, A. A. (1990). Sleep regulation in rats during early development. American Journal of Physiology, 258, R634–R644.PubMedGoogle Scholar
  4. Andersen, S. L., Dumont, N. L., & Teicher, M. H. (1997). Developmental differences in dopamine synthesis inhibition by (textplusminus)-7-OH-DPAT. Naunyn-Schmiedeberg’s Archives of Pharmacology, 356, 173–181.PubMedCrossRefGoogle Scholar
  5. Andersen, S. L., Thompson, A. T., Rutstein, M., Hostetter, J. C., Jr., & Teicher, M. H. (2000). Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse, 37, 167–169.PubMedCrossRefGoogle Scholar
  6. Baumrind, D. (1987). A developmental perspective on adolescent risk taking in contemporary America. In C. E. Irwin Jr. (Ed.), Adolescent social behavior and health (pp. 93–125). San Francisco: Jossey-Bass.Google Scholar
  7. Belue, R. C., Howlett, A. C., Westlake, T. M., & Hutchings, D. E. (1995). The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicology and Teratology, 17, 25–30.PubMedCrossRefGoogle Scholar
  8. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.PubMedCrossRefGoogle Scholar
  9. Bixler, R. H. (1992). Why littermates don’t: The avoidance of inbreeding depression. Annual Review of Sex Research, 3, 291–328.Google Scholar
  10. Bogerts, B. (1989). Limbic and paralimbic pathology in schizophrenia: Interaction with age- and stress-related factors. In S. C. Schulz & C. A. Tamminga (Eds.), Schizophrenia: Scientific progress (pp. 216–226). Oxford: Oxford University Press.Google Scholar
  11. Bourgeois, J.-P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 78–96.PubMedCrossRefGoogle Scholar
  12. Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In M. H. Bornstein & J. L. Genevro (Eds.), Child development and behavioral pediatrics (pp. 35–58). Mahwah, NJ: Erlbaum.Google Scholar
  13. Brook, C. G., & Hindmarsh, P. C. (1992). The somatotropic axis in puberty. Endocrinology and Metabolism Clinics of North America, 21, 767–782.PubMedGoogle Scholar
  14. Brooks-Gunn, J., & Attie, I. (1996). Developmental psychopathology in the context of adolescence. In M. F. Lenzenweger & J. J. Haugaard (Eds.), Frontiers of developmental psychopathology (pp. 148–189). New York: Oxford University Press.Google Scholar
  15. Brooks-Gunn, J., & Reiter, E. O. (1990). The role of pubertal processes. In S. S. Feldman & G. R. Elliott (Eds.), At the threshold: The developing adolescent (pp. 16–53). Cambridge, MA: Harvard University Press.Google Scholar
  16. Brown, S. A., Tapert, S. F., Granholm, E., & Delis, D. C. (2000). Neurocognitive functioning of adolescents: Effects of protracted alcohol use. Alcoholism: Clinical and Experimental Research, 24, 164–171.CrossRefGoogle Scholar
  17. Bunney, W. E., Jr., & Bunney, B. G. (1999). Neurodevelopmental hypothesis of schizophrenia. In D. S. Charney, E. J. Nestler, & B. S. Bunney (Eds.), Neurobiology of mental illness (pp. 225–235). New York: Oxford University Press.Google Scholar
  18. Carskadon, M. A., Vieira, C., & Acebo, C. (1993). Association between puberty and delayed phase preference. Sleep, 16, 258–262.PubMedGoogle Scholar
  19. Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241–257.PubMedCrossRefGoogle Scholar
  20. Chugani, H. T. (1994). Development of regional brain glucose metabolism in relation to behavior and plasticity. In G. Dawson & K. W. Fischer (Eds.), Human behavior and the developing brain (pp. 153–175). New York: Guilford.Google Scholar
  21. Chugani, H. T. (1996). Neuroimaging of developmental nonlinearity and developmental pathologies. In R. W. Thatcher, G. R. Lyon, J. Rumsey, & N. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of brain and behavior (pp. 187–195). San Diego, CA: Academic Press.Google Scholar
  22. Cicchetti, D., & Walker, E. F. (2001). Stress and development: Biological and psychological consequences. Development and Psychopathology, 13, 413–418.CrossRefGoogle Scholar
  23. Coe, C. L., Hayashi, K. T., & Levine, S. (1988). Hormones and behavior at puberty: Activation or concatenation? In M. R. Gunnar & W. A. Collins (Eds.), Minnesota Symposia on Child Development: Vol. 21. Development during the transition to adolescence (pp. 17–41). Hillsdale, NJ: Erlbaum.Google Scholar
  24. Crews, F. T., Braun, C. J., Hoplight, B., Switzer, R. C., III, & Knapp, D. J. (2000). Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcoholism: Clinical and Experimental Research, 24, 1712–1723.CrossRefGoogle Scholar
  25. Crockett, C. M., & Pope, T. R. (1993). Consequences of sex differences in dispersal for juvenile red howler monkeys. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates: Life history, development, and behavior (pp. 104–118). New York: Oxford University Press.Google Scholar
  26. Crome, I. B. (1999). Treatment interventions—Looking towards the millennium. Drug and Alcohol Dependence, 55, 247–263.PubMedCrossRefGoogle Scholar
  27. Csikszentmihalyi. M., Larson, R., & Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of Youth and Adolescence, 6, 281–294.CrossRefGoogle Scholar
  28. De Bellis, M. D., Clark, D. B., Beers, S. R., Soloff, P. H., Boring, A. M., Hall, J., et al. (2000). Hippocampal volume in adolescent-onset alcohol use disorders. American Journal of Psychiatry, 157, 737–744,PubMedCrossRefGoogle Scholar
  29. Dunn, A. J. (1988). Stress-related activation of cerebral dopaminergic systems. Annals of the New York Academy of Sciences, 537, 188–205.PubMedCrossRefGoogle Scholar
  30. Enright, R. D., Levy, V. M., Jr., Harris, D., & Lapsley, D. K. (1987). Do economic conditions influence how theorists view adolescents? Journal of Youth and Adolescence, 16, 541–549.CrossRefGoogle Scholar
  31. Flores, G., Wood, G. K., Liang, J.-J., Quirion, R., & Srivastava, L. K. (1996). Enhanced amphetamine sensitivity and increased expression of dopamine D2 receptors in postpubertal rats after neonatal excitotoxic lesions of the medial prefrontal cortex. Journal of Neuroscience, 16, 7366–7375.PubMedGoogle Scholar
  32. Fride, E., & Mechoulam, R. (1996a). Developmental aspects of anandamide: Ontogeny of response and prenatal exposure. Psychoneuroendocrinology, 21, 157–172.CrossRefGoogle Scholar
  33. Fride, E., & Mechoulam, R. (1996b). Ontogenetic development of the response to anandamide and °-(9)-tetrahydrocannabinol in mice. Developmental Brain Research, 95, 131–134.Google Scholar
  34. Frisch, R. E. (1984). Body fat, puberty and fertility. Biological Reviews, 59, 161–188.PubMedCrossRefGoogle Scholar
  35. Galef, B. G., Jr. (1977). Mechanisms for the social transmission of food preferences from adult to weanling rats. In L. M. Barker, M. Best, & M. Domjan (Eds.), Learning mechanisms in food selection (pp. 123–148). Waco, TX: Baylor University Press.Google Scholar
  36. Ganji, V., & Betts, N. (1995). Fat, cholesterol, fiber and sodium intakes of US population: Evaluation of diets reported in 1987–88 Nationwide Food Consumption Survey. European Journal of Clinical Nutrition, 49, 915–920.PubMedGoogle Scholar
  37. Gardner, E. L. (1999). The neurobiology and genetics of addiction: Implications of the reward deficiency syndrome for therapeutic strategies in chemical dependency. In J. Elster (Ed.), Addiction: Entries and exits (pp. 57–119). New York: Russell Sage Foundation.Google Scholar
  38. Ge, X., Lorenz, F. O., Conger, R. D., Elder, G. H., Jr., & Simons, R. L. (1994). Trajectories of stressful life events and depressive symptoms during adolescence. Developmental Psychology, 30, 467–483.CrossRefGoogle Scholar
  39. Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21, 1185–1201.CrossRefGoogle Scholar
  40. Goldman, P. S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Experimental Neurology, 32, 366–387.PubMedCrossRefGoogle Scholar
  41. Goldman-Rakic, P. S., Isseroff, A., Schwartz, M. L., & Bugbee, N. M. (1983). The neurobiology of cognitive development. In P. H. Mussen (Ed.), Handbook of child psychology: Vol. 2. Infancy and developmental psychobiology (pp. 281–344). New York: Wiley.Google Scholar
  42. Graber, J. A., & Brooks-Gunn, J. (1996). Transitions and turning points: Navigating the passage from childhood through adolescence. Developmental Psychology, 32, 768–776.CrossRefGoogle Scholar
  43. Graber, J. A., Petersen, A. C., & Brooks-Gunn, J. (1996). Pubertal processes: Methods, measures, and models. In J. A. Graber, J. Brooks-Gunn, & A. C. Petersen (Eds.), Transitions through adolescence: Interpersonal domains and context (pp. 23–53). Mahwah, NJ: Erlbaum.Google Scholar
  44. Greenbush, W. T., Cohen, N. J., & Juraska, J. M. (1999). New neurons in old brains: Learning to survive? Nature Neuroscience, 2, 203–205.Google Scholar
  45. Harris, J. R. (1995). Where is the child’s environment? A group socialization theory of development. Psychological Review, 102, 458–489.CrossRefGoogle Scholar
  46. Huttenlocher, P. R. (1979). Synaptic density of human frontal cortex: Developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  47. Irwin, C. E., Jr., & Millstein, S. G. (1992). Correlates and predictors of risk-taking behavior during adolescence. In L. P. Lipsitt & L. L. Mitnick (Eds.), Self-regulatory behavior and risk taking: Causes and consequences (pp. 3–21). Norwood, NJ: Ablex.Google Scholar
  48. Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049.PubMedCrossRefGoogle Scholar
  49. Kalsbeek, A., Voorn, P., Buijs, R. M., Pool, C. W., & Uylings, H. B. M. (1988). Development of the dopaminergic innervation in the prefrontal cortex of the rat. Journal of Comparative Neurology, 269, 58–72.PubMedCrossRefGoogle Scholar
  50. Keane, B. (1990). Dispersal and inbreeding avoidance in the white-footed mouse, Peromyscus leucopus. Animal Behaviour, 40, 143–152.CrossRefGoogle Scholar
  51. Kellogg, C. K. (1991). Postnatal effects of prenatal exposure to psychoactive drugs. Pre- and Peri-Natal Psychology, 5, 233–251.Google Scholar
  52. Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience, 83, 681–689.PubMedCrossRefGoogle Scholar
  53. Killgore, W. D. S., Oki, M., & Yurgelun-Todd, D. A. (2001). Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport, 12, 427–433.PubMedCrossRefGoogle Scholar
  54. Kleim, J. A., Swain, R. A., Armstrong, K. A., Napper, R. M. A., Jones, T. A., & Greenbush, W. T. (1998). Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of Learning and Memory, 69, 274–289.PubMedCrossRefGoogle Scholar
  55. Koob, G. F., Robledo, P., Markou, A., & Caine, S. B. (1993). The mesocorticolimbic circuit in drug dependence and reward—A role for the extended amygdala? In P. W. Kalivas & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 289–309). Boca Raton, FL: CRC Press.Google Scholar
  56. Kurlan, R. (1992). The pathogenesis of Tourette’s syndrome: A possible role for hormonal and excitatory neurotransmitter influences in brain development. Archives of Neurology, 49, 874–876.PubMedGoogle Scholar
  57. Kutcher, S., & Sokolov, S. (1995). Adolescent depression: Neuroendocrine aspects. In I. M. Goodyer (Ed.), The depressed child and adolescent: Developmental and clinical perspectives (pp. 195–224). Cambridge: Cambridge University Press.Google Scholar
  58. Larson, R., & Asmussen, L. (1991). Anger, worry, and hurt in early adolescence: An enlarging world of negative emotions. In M. E. Colten & S. Gore (Eds.), Adolescent stress: Causes and consequences (pp. 21–41). New York: Aldine de Gruyter.Google Scholar
  59. Larson, R., & Richards, M. H. (1994). Divergent realities: The emotional lives of mothers, fathers, and adolescents. New York: Basic Books.Google Scholar
  60. Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiological Reviews, 71, 155–234.PubMedGoogle Scholar
  61. Leslie, C. A., Robertson, M. W., Cutler, A. J., & Bennett, J. P., Jr. (1991). Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: A quantitative autoradiographic analysis. Developmental Brain Research, 62, 109–114.PubMedCrossRefGoogle Scholar
  62. Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123, 1041–1050.PubMedCrossRefGoogle Scholar
  63. Levy, D., Gray-Donald, K., Leech, J., Zvagulis, I., & Pless, I. B. (1986). Sleep patterns and problems in adolescence. Journal of Adolescent Health Care, 7, 386–389.PubMedCrossRefGoogle Scholar
  64. Lipska, B. K., & Weinberger, D. R. (1993a). Cortical regulation of the mesolimbic dopamine system: Implications for schizophrenia. In P. W. Kalivas & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 329–349). Boca Raton, FL: CRC Press.Google Scholar
  65. Lipska, B. K., & Weinberger, D. R. (1993b). Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Developmental Brain Research, 75, 213–222.CrossRefGoogle Scholar
  66. Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., et al. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage, 13, 786–793.PubMedCrossRefGoogle Scholar
  67. Lupien, S. J., Ménard, C., Lussier, I., McEwen, B., & Meaney, M. J. (1998, November). Basal morning cortisol levels and cognitive function in children from low and high socioeconomic status. Paper presented at the annual meeting of the Society for Neuroscience, Los Angeles, CA.Google Scholar
  68. Merola, J. L., & Liederman, J. (1985). Developmental changes in hemispheric independence. Child Development, 56, 1184–1194.PubMedCrossRefGoogle Scholar
  69. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250.PubMedCrossRefGoogle Scholar
  70. Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700–712.PubMedGoogle Scholar
  71. Moltz, H. (1975). The search for the determinants of puberty in the rat. In B. E. Eleftheriou & R. L. Sprott (Eds.), Hormonal correlates of behavior: A lifespan view (pp. 35–154). New York: Plenum.Google Scholar
  72. Montague, D. M., Lawler, C. P., Mailman, R. B., & Gilmore, J. H. (1999). Developmental regulation of the dopamine D1 receptor in human caudate and putamen. Neuropsychopharmacology, 21, 641–649.PubMedCrossRefGoogle Scholar
  73. Moore, J. (1992). Dispersal, nepotism, and primate social behavior. International Journal of Primatology, 13, 361–378.CrossRefGoogle Scholar
  74. Nance, D. M. (1983). The developmental and neural determinants of the effects of estrogen on feeding behavior in the rat: A theoretical perspective. Neuroscience and Biobehavioral Reviews, 7, 189–211.PubMedCrossRefGoogle Scholar
  75. Osborne, G. L., & Butler, A. C. (1983). Enduring effects of periadolescent alcohol exposure on passive avoidance performance in rats. Physiological Psychology, 11, 205–208.Google Scholar
  76. Parker, L. N. (1991). Adrenarche. Endocrinology and Metabolism Clinics of North America, 20, 71–83.PubMedGoogle Scholar
  77. Petersen, A. C., Silbereisen, R. K., & Sörensen, S. (1996). Adolescent development: A global perspective. In K. Hurrelmann & S. F. Hamilton (Eds.), Social problems and social contexts in adolescence (pp. 3–37). New York: Aldine de Gruyter.Google Scholar
  78. Pine, D. S., Grun, J., Zarahn, E., Fyer, A., Koda, V., Li, W., et al. (2001). Cortical brain regions engaged by masked emotional faces in adolescents and adults: An fMRI study. Emotion, 1, 137–147.PubMedCrossRefGoogle Scholar
  79. Post, G. B., & Kemper, H. C. G. (1993). Nutrient intake and biological maturation during adolescence. The Amsterdam Growth and Health Longitudinal Study. European Journal of Clinical Nutrition, 47, 400–408.PubMedGoogle Scholar
  80. Primus, R. J., & Kellogg, C. K. (1989). Pubertal-related changes influence the development of environment-related social interaction in the male rat. Developmental Psychobiology, 22, 633–643.PubMedCrossRefGoogle Scholar
  81. Puig-Antich, J. (1987). Sleep and neuroendocrine correlates of affective illness in childhood and adolescence. Journal of Adolescent Health Care, 8, 505–529.PubMedCrossRefGoogle Scholar
  82. Rakic, P., Bourgeois, J.-P., & Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: Implications for learning, memory, and mental illness. In J. van Pelt, M. A. Corner, H. B. M. Uylings, & F. H. Lopes da Silva (Eds.), Progress in brain research: Vol. 102. The self-organizing brain: From growth cones to functional networks (pp. 227–243). Amsterdam: Elsevier.Google Scholar
  83. Rosenberg, D. R., & Lewis, D. A. (1994). Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study. Biological Psychiatry, 36, 272–277.PubMedCrossRefGoogle Scholar
  84. Rosenberg, D. R., & Lewis, D. A. (1995). Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis. Journal of Comparative Neurology, 358, 383–400.PubMedCrossRefGoogle Scholar
  85. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C. R., Simmons, A., et al. (2000). Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI. Neuroscience and Biobehavioral Reviews, 24, 13–19.PubMedCrossRefGoogle Scholar
  86. Saugstad, L. F. (1994). The maturational theory of brain development and cerebral excitability in the multifactorially inherited manic-depressive psychosis and schizophrenia. International Journal of Psychophysiology, 18, 189–203.PubMedCrossRefGoogle Scholar
  87. Savin-Williams, R. C., & Weisfeld, G. E. (1989). An ethological perspective on adolescence. In G. R. Adams, R. Montemayor, & T. P. Gullotta (Eds.), Biology of adolescent behavior and development (pp. 249–274). Newbury Park, CA: Sage.Google Scholar
  88. Schlegel, A., & Barry, H., III (1991). Adolescence: An anthropological inquiry. New York: Free Press.Google Scholar
  89. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121, 561–579.PubMedCrossRefGoogle Scholar
  90. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMedGoogle Scholar
  91. Seeman, P., Bzowej, N. H., Guan, H.-C., Bergeron, C., Becker, L. E., Reynolds, G. P., et al. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399–404.PubMedCrossRefGoogle Scholar
  92. Shedler, J., & Block, J. (1990). Adolescent drug use and psychological health: A longitudinal inquiry. American Psychologist, 45, 612–630.PubMedCrossRefGoogle Scholar
  93. Smith, L. K., Forgie, M. L., & Pellis, S. M. (1998). The postpubertal change in the playful defense of male rats depends upon neonatal exposure to gonadal hormones. Physiology and Behavior, 63, 151–155.CrossRefGoogle Scholar
  94. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417–463.PubMedCrossRefGoogle Scholar
  95. Spear, L. P. (2003). Neurodevelopment during adolescence. In D. Cicchetti & E. F. Walker (Eds.), Neurodevelopmental mechanisms in psychopathology (pp. 62–83). Cambridge: Cambridge University Press.Google Scholar
  96. Steinberg, L. (1989). Pubertal maturation and parent-adolescent distance: An evolutionary perspective. In G. R. Adams, R. Montemayor, & T. P. Gullotta (Eds.), Advances in adolescent behavior and development (pp. 71–97). Newbury Park, CA: Sage.Google Scholar
  97. Susman, E. J., & Ponirakis, A. (1997). Hormones–context interactions and anti-social behavior in youth. In A. Raine, P. A. Brennan, D. P. Farrington, & S. A. Mednick (Eds.), Biosocial bases of violence (pp. 251–269). New York: Plenum Press.Google Scholar
  98. Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. International Journal of Developmental Neuroscience, 18, 29–37.PubMedCrossRefGoogle Scholar
  99. Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1998). Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neuroscience Letters, 254, 21–24.PubMedCrossRefGoogle Scholar
  100. Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1999). Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: An autoradiographic study. Developmental Neuroscience, 21, 43–49.PubMedCrossRefGoogle Scholar
  101. Teicher, M. H., & Andersen, S. L. (1999, October). Limbic serotonin turnover plunges during puberty. Poster session presented at the annual meeting of the Society for Neuroscience, Miami Beach, FL.Google Scholar
  102. Teicher, M. H., Andersen, S. L., & Hostetter, J. C., Jr. (1995). Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Developmental Brain Research, 89, 167–172.PubMedCrossRefGoogle Scholar
  103. Terasawa, E., & Timiras, P. S. (1968). Electrophysiological study of the limbic system in the rat at onset of puberty. American Journal of Physiology, 215, 1462–1467.PubMedGoogle Scholar
  104. Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., et al. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309–316.PubMedCrossRefGoogle Scholar
  105. Trimpop, R. M., Kerr, J. H., & Kirkcaldy, B. (1999). Comparing personality constructs of risk-taking behavior. Personality and Individual Differences, 26, 237–254.CrossRefGoogle Scholar
  106. Tyler, D. B., & van Harreveld, A. (1942). The respiration of the developing brain. American Journal of Physiology, 136, 600–603.Google Scholar
  107. van Eden, C. G., Kros, J. M., & Uylings, H. B. M. (1990). The development of the rat prefrontal cortex: Its size and development of connections with thalamus, spinal cord and other cortical areas. In H. B. M. Uylings, C. G. van Eden, J. P. C. De Bruin, M. A. Corner, & M. G. P. Feenstra (Eds.), Progress in brain research: Vol. 85. The prefrontal cortex: Its structure, function and pathology (pp. 169–183). Amsterdam: Elsevier.Google Scholar
  108. van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedCrossRefGoogle Scholar
  109. Walker, E. F., & Walder, D. (2003). Neurohormonal aspects of the development of psychotic disorders. In D. Cicchetti & E. F. Walker (Eds.), Neurodevelopmental mechanisms in psychopathology (pp. 526–544). Cambridge: Cambridge University Press.Google Scholar
  110. West, P. (1997). Health inequalities in the early years: Is there equalisation in youth? Social Science and Medicine, 44, 833–858.PubMedCrossRefGoogle Scholar
  111. Whishaw, I. Q., Fiorino, D., Mittleman, G., & Castaneda, E. (1992). Do forebrain structures compete for behavioral expression? Evidence from amphetamine-induced behavior, microdialysis, and caudate-accumbens lesions in medial frontal cortex damaged rats. Brain Research, 576, 1–11.PubMedCrossRefGoogle Scholar
  112. White, A. M., Ghia, A. J., Levin, E. D., & Swartzwelder, H. S. (2000). Binge pattern ethanol exposure in adolescent and adult rats: Differential impact on subsequent responsiveness to ethanol. Alcoholism: Clinical and Experimental Research, 24, 1251–1256.CrossRefGoogle Scholar
  113. Wilson, M., & Daly, M. (1985). Competitiveness, risk taking, and violence: The young male syndrome. Ethology and Sociobiology, 6, 59–73.CrossRefGoogle Scholar
  114. Zecevic, N., Bourgeois, J.-P., & Rakic, P. (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Developmental Brain Research, 50, 11–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Linda Patia Spear
    • 1
  1. 1.Binghamton UniversityBinghamton

Personalised recommendations