Advertisement

Microarrays pp 191-210 | Cite as

Photo-Generation of Carbohydrate Microarrays

  • Gregory T. Carroll
  • Denong Wang
  • Nicholas J. Turro
  • Jeffrey T. Koberstein
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

The unparalleled structural diversity of carbohydrates among biological molecules has been recognized for decades. Recent studies have highlighted carbohydrate signaling roles in many important biological processes, such as fertilization, embryonic development, cell differentiation and cellȁ4cell communication, blood coagulation, inflammation, chemotaxis, as well as host recognition and immune responses to microbial pathogens. In this chapter, we summarize recent progress in the establishment of carbohydrate-based microarrays and the application of these technologies in exploring the biological information content in carbohydrates. A newly established photochemical platform of carbohydrate microarrays serves as a model for a focused discussion.

Keywords

Sialic Acid Hydrogen Abstraction Carbohydrate Moiety Sialic Acid Residue Galactose Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Apweiler, R., H. Hermjakob, et al. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta, Gen. Subj. 1473(1): 4–8.CrossRefGoogle Scholar
  2. 2.
    Davis, B.G.F. and J. Antony (2002). Carbohydrate Chemistry. Oxford, Oxford University Press.Google Scholar
  3. 3.
    Lindhorst, T.K. (2003). Essentials of Carbohydrate Chemistry and Biochemistry. Weinheim, Wiley-VCH.Google Scholar
  4. 4.
    Schwartz, A.L., S.E. Fridovich, et al. (1981). Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J. Biol. Chem. 256(17): 8878–8881.Google Scholar
  5. 5.
    Wang, D., and J. Lu (2004). Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV. Physiol. Genomics 18(2): 245–248.CrossRefGoogle Scholar
  6. 6.
    Rosati, F., A. Capone, et al. (2000). Sperm-egg interaction at fertilization: glycans as recognition signals. Int. J. Dev. Biol. 44(6): 609–618Google Scholar
  7. 7.
    Focarelli, R., G.B. La Sala, et al. (2001). Carbohydrate-mediated sperm-egg interaction and species specificity: A clue from the Unio elongatulus model. Cells Tissues Organs 168(1–2): 76–81.CrossRefGoogle Scholar
  8. 8.
    Crocker, P.R. and T. Feizi (1996). Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 6(5): 679–691.CrossRefGoogle Scholar
  9. 9.
    Ziska, S.E., and E.J. Henderson (1988). Cell surface oligosaccharides participate in cohesion during aggregation of Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 85(3): 817–821.CrossRefGoogle Scholar
  10. 10.
    Geijtenbeek, T.B., D.S. Kwon, et al. (2000). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5): 587–597.CrossRefGoogle Scholar
  11. 11.
    Geijtenbeek, T.B., R. Torensma, et al. (2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5): 575–585.CrossRefGoogle Scholar
  12. 12.
    Lindahl, U., L. Thunberg, et al. (1984). Extension and structural variability of the anti-thrombin-binding sequence in heparin. J. Biol. Chem. 259(20): 12368–12376.Google Scholar
  13. 13.
    Capila, I. and R.J. Linhardt (2002). Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41(3): 391–412.CrossRefGoogle Scholar
  14. 14.
    Kansas, G.S. (1996). Selectins and their ligands: Current concepts and controversies. Blood 88(9): 3259–3287.Google Scholar
  15. 15.
    Gardinali, M., P. Padalino, et al. (1992). Complement activation and polymorphonuclear neu-trophil leukocyte elastase in sepsis. Correlation with severity of disease. Arch. Surg. 127(10): 1219–1224.Google Scholar
  16. 16.
    Karlsson, K.A., J. Angstrom, et al (1992). Microbial interaction with animal cell surface carbohydrates. APMIS. Suppl. 27: 71–83.Google Scholar
  17. 17.
    Feizi, T., and R.W. Loveless (1996). Carbohydrate recognition by Mycoplasma pneumoniae and pathologic consequences. Am. J. Respir. Crit. Care. Med. 154(4 Pt 2): S133–6.Google Scholar
  18. 18.
    Wang, D. and E.A. Kabat (1996). Carbohydrate antigens (polysaccharides). Structure of Antigens. M.H.V.V. Regenmortal (Ed.). Boca Raton, FL, CRC Press. 3: 247–276.Google Scholar
  19. 19.
    Lee, Y.C., and R.T. Lee (1995). Carbohydrate-protein interactions: Basis of glycobiology. Acc. Chem. Res. 28(8): 321–327.CrossRefGoogle Scholar
  20. 20.
    Drickamer, K. and M.E. Taylor (2002). Glycan arrays for functional glycomics. GenomeBiol. 3(12): No pp given.Google Scholar
  21. 21.
    Mammen, M., S.-K. Chio, et al. (1998). Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37(20): 2755–2794.CrossRefGoogle Scholar
  22. 22.
    Wang, D. and E.A. Kabat (1998). Antibodies, specificity. Encyclopedia of Immunology. Delves and Roitt (Eds.). London, Academic Press: 148–154.Google Scholar
  23. 23.
    Wang, D. (2004). Carbohydrate antigens. Encyclopedia of Molecular Cell Biology and Molecular Medicine. R.A. Meyers (Ed.), Weinheim, Wiley-VCH. II: 277–301.Google Scholar
  24. 24.
    Fazio, F., M.C. Bryan, et al. (2002). Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc. 124(48): 14397–14402.CrossRefGoogle Scholar
  25. 25.
    Fukui, S., T. Feizi, et al. (2002). Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nature Biotechnol. 20(10): 1011–1017.CrossRefGoogle Scholar
  26. 26.
    Houseman, B.T. and M. Mrksich (2002). Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem. Biol. 9(4): 443–454.CrossRefGoogle Scholar
  27. 27.
    Park, S., and I. Shin (2002). Fabrication of carbohydrate chips for studying protein-carbohydrate interactions. Angew. Chem. Int. Ed. Engl. 41(17): 3180–3182.CrossRefGoogle Scholar
  28. 28.
    Wang, D., S. Liu, et al. (2002). Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnol. 20(3): 275–281.CrossRefGoogle Scholar
  29. 29.
    Adams, E.W., D.M. Ratner, et al. (2004). Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology glycan-dependent gp120/protein interactions. Chem. Biol. 11(6): 875–881.CrossRefGoogle Scholar
  30. 30.
    Willats, W.G.T. (2005). Microarrays for the high-throughput analysis of protein-carbohydrate interactions. Protein Microarrays57–69.Google Scholar
  31. 31.
    Carroll, G.T., D. Wang, et al. (2006). Photochemical micropatterning of carbohydrates on a surface. Langmuir 22(6): 2899–2905.CrossRefGoogle Scholar
  32. 32.
    Guo, Y., H. Feinberg, et al. (2004). Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11(7): 591–598.CrossRefGoogle Scholar
  33. 33.
    Stevens, J., O. Blixt, et al. (2006). Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355(5): 1143–1155.CrossRefGoogle Scholar
  34. 34.
    Bryan, M.C., L.V. Lee, et al. (2004). High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. Bioorg. Med. Chem. Lett. 14(12): 3185–3188.CrossRefGoogle Scholar
  35. 35.
    Shin, I., S. Park, et al. (2005). Carbohydrate microarrays: An advanced technology for functional studies of glycans. Chem. Euro. J. 11(10): 2894–2901.CrossRefGoogle Scholar
  36. 36.
    Willats, W.G., S.E. Rasmussen, et al. (2002). Sugar-coated microarrays: A novel slide surface for the high-throughput analysis of glycans. Proteomics 2(12): 1666–1671.CrossRefGoogle Scholar
  37. 37.
    Wang, D. (2003). Carbohydrate microarrays. Proteomics. 3(11): 2167–2175.CrossRefGoogle Scholar
  38. 38.
    Wang, R., S. Liu, et al (2005). A practical protocol for carbohydrate microarrays. Methods in Molecular Biology. Totowa, NJ, 310: 241–252.CrossRefGoogle Scholar
  39. 39.
    Bryan, M.C., O. Plettenburg, et al. (2002). Saccharide display on microtiter plates. Chem. Biol. 9(6): 713–720.CrossRefGoogle Scholar
  40. 40.
    Ko, K.-S., F.A. Jaipuri, et al. (2005). Fluorous-based carbohydrate microarrays. J. Am. Chem. Soc. 127(38): 13162–13163.CrossRefGoogle Scholar
  41. 41.
    Manimala, J.C., Z. Li, et al. (2005). Carbohydrate array analysis of anti-Tn antibodies and lectins reveals unexpected specificities: implications for diagnostic and vaccine development. Chembiochem. 6(12): 2229–2241.CrossRefGoogle Scholar
  42. 42.
    Manimala, J.C., T.A. Roach, et al. (2006). High-throughput carbohydrate microarray analysis of 24 lectins. Angew. Chem. Int. Ed. Engl. 45(22): 3607–3610.CrossRefGoogle Scholar
  43. 43.
    Shao, M.C. (1992). The use of streptavidin-biotinylglycans as a tool for characterization of oligosaccharide-binding specificity of lectin. Anal. Biochem. 205(1): 77–82.CrossRefGoogle Scholar
  44. 44.
    Bochner, B.S., R.A. Alvarez, et al. (2005). Glycan array screening reveals a candidate ligand for Siglec-8. J. Biol. Chem. 280(6): 4307–4312.CrossRefGoogle Scholar
  45. 45.
    Park, S., M.-R. Lee, et al. (2004). Carbohydrate chips for studying high-throughput carbohydrate-protein interactions. J. Am. Chem. Soc. 126(15): 4812–4819.CrossRefGoogle Scholar
  46. 46.
    Bryan, M.C., F. Fazio, et al. (2004). Covalent display of oligosaccharide arrays in microtiter plates. J. Amer. Chem. Soc. 126(28): 8640–8641.CrossRefGoogle Scholar
  47. 47.
    Blixt, O., S. Head, et al. (2004). Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101(49): 17033–17038.CrossRefGoogle Scholar
  48. 48.
    de Paz, J.L., C. Noti, et al. (2006). Microarrays of synthetic heparin oligosaccharides. J. Am. Chem. Soc. 128(9): 2766–2767.CrossRefGoogle Scholar
  49. 49.
    Schwarz, M., L. Spector, et al. (2003). A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13(11): 749–754.CrossRefGoogle Scholar
  50. 50.
    Xia, B., Z.S. Kawar, et al. (2005). Versatile fluorescent derivatization of glycans for glycomic analysis. Nature Meth. 2(11): 845–850.CrossRefGoogle Scholar
  51. 51.
    Fritz, M.C., G. Hähner, et al. (1996). Self-assembled hexasaccharides: Surface characterization of thiol-terminated sugars adsorbed on a gold surface. Langmuir 12(25): 6074–6082.CrossRefGoogle Scholar
  52. 52.
    Revell, D.J., J.R. Knight, et al. (1998). Self-assembled carbohydrate monolayers: Formation and surface selective molecular recognition. Langmuir 14(16): 4517–4524.CrossRefGoogle Scholar
  53. 53.
    Lee, M.-R. and I. Shin (2005). Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Organic Lett. 7(19): 4269–4272.CrossRefGoogle Scholar
  54. 54.
    Zhi, Z.-l., A. K. Powell, et al. (2006). Fabrication of carbohydrate microarrays on gold surfaces: Direct attachment of nonderivatized oligosaccharides to hydrazide-modified self-assembled monolayers. Anal. Chem. 78(14): 4786–4793.CrossRefGoogle Scholar
  55. 55.
    Yates, E.A., M.O. Jones, et al. (2003). Microwave enhanced reaction of carbohydrates with amino-derivatized labels and glass surfaces. J. Mater. Chem. 13(9): 2061–2063.CrossRefGoogle Scholar
  56. 56.
    Peramo, A., A. Albritton, et al. (2006). Deposition of patterned glycosaminoglycans on silan-ized glass surfaces. Langmuir 22(7): 3228–3234.CrossRefGoogle Scholar
  57. 57.
    Zhou, X. and J. Zhou (2006). Oligosaccharide microarrays fabricated on aminooxyacetyl functionalized glass surface for characterization of carbohydrate-protein interaction. Biosens. Bioelectron. 21(8): 1451–1458.CrossRefGoogle Scholar
  58. 58.
    Takahashi, S. and J. Anzai (2005). Phenylboronic acid monolayer-modified electrodes sensitive to sugars. Langmuir 21(11): 5102–5107.CrossRefGoogle Scholar
  59. 59.
    Turro, N.J. (1991). Modern Molecular Photochemistry. Sausalito, CA, University Science Books.Google Scholar
  60. 60.
    Binkley, E.R. and R.W. Binkley (1998). Carbohydrate Photochemistry. In: ACS Monogr., 1998; 191.Google Scholar
  61. 61.
    Madden, K.P., and R.W. Fessenden (1982). ESR study of the attack of photolytically produced hydroxyl radicals on a-methyl-D-glucopyranoside in aqueous solution. J. Am. Chem. Soc. 104(9): 2578–2581.CrossRefGoogle Scholar
  62. 62.
    Shkrob, I.A., M.C. Depew, et al. (1993). Time-resolved, electron-spin resonance study of radical species derived from naturally occurring carbohydrates. Chem. Phys. Lett. 202(1–2): 133–140.CrossRefGoogle Scholar
  63. 63.
    Gilbert, B.C., D.M. King, et al. (1984). Radical reactions of carbohydrates, Part 5. The oxidation of some polysaccharides by the hydroxyl radical: An ESR investigation. Carbohydrate Res. 125(2): 217–235.CrossRefGoogle Scholar
  64. 64.
    Angeloni, S., J.L. Ridet, et al. (2005). Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15(1): 31–41.CrossRefGoogle Scholar
  65. 65.
    Chevolot, Y., O. Bucher, et al. (1999). Synthesis and characterization of a photoactivatable glycoaryldiazirine for surface glycoengineering. Bioconj. Chem. 10(2): 169–175.CrossRefGoogle Scholar
  66. 66.
    Chevolot, Y., J. Martins, et al. (2001). Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides: Biological activities of modified surfaces. Bioorg. Med. Chem. 9(11): 2943–2953.CrossRefGoogle Scholar
  67. 67.
    Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chem. Rev. 96(4): 1533–1554.CrossRefGoogle Scholar
  68. 68.
    Kanaoka, Y. (1978). Photoreactions of cyclic imides. Examples of synthetic organic photochemistry. Acc. Chem. Res. 11(11): 407–413.CrossRefGoogle Scholar
  69. 69.
    Yoon, U.C., and P.S. Mariano (2001). The synthetic potential of phthalimide SET photochemistry. Acc. Chem. Res. 34(7): 523–533.CrossRefGoogle Scholar
  70. 70.
    Wang, D., G.T. Carroll, et al (2006). Immunogenic sugar moieties of the Bacillus anthracis exosporium (anthrose-based compositions and related methods). United States Provisional Patent Application, Dkt 76323-pro, filed September 15, 2006.Google Scholar
  71. 71.
    Daubenspeck, J.M., H. Zeng, et al. (2004). Novel oligosaccharide side chains of the collagenlike region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J. Biol. Chem. 279(30): 30945–30953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gregory T. Carroll
    • 1
  • Denong Wang
    • 2
  • Nicholas J. Turro
    • 3
  • Jeffrey T. Koberstein
    • 3
  1. 1.Department of ChemistryColumbia UniversityMC 3157New York
  2. 2.Stanford Tumor Glycome Laboratory, Department of GeneticsStanford University School of Medicine, Beckman Center B006Stanford
  3. 3.Department of Chemical EngineeringColumbia UniversityNew York

Personalised recommendations