Microarrays pp 169-190 | Cite as

Protein Microarrays for the Detection of Biothreats

  • Amy E. Herr
Part of the Integrated Analytical Systems book series (ANASYS)


Although protein microarrays have proven to be an important tool in proteomics research, the technology is emerging as useful for public health and defense applications. Recent progress in the measurement and characterization of biothreat agents is reviewed in this chapter. Details concerning validation of various protein microarray formats, from contact-printed sandwich assays to supported lipid bilayers, are presented. The reviewed technologies have important implications for in vitro characterization of toxin–ligand interactions, serotyping of bacteria, screening of potential biothreat inhibitors, and as core components of biosensors, among others, research and engineering applications.


Cholera Toxin Severe Acute Respiratory Syndrome Competition Assay Naval Research Laboratory Protein Microarrays 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andreotti, P.E., Ludwig, G.V., Peruski, A.H., Tuite, J.J., Morse, S.S., and Peruski, L.F. (2003) Immunoassay of infectious agents. BioTechniques, 35, 850–859.Google Scholar
  2. 2.
    Feng, P. (1997) Impact of molecular biology on the detection of foodborne pathogens. Mol. Biotechnol., 7, 267.CrossRefGoogle Scholar
  3. 3.
    vanderZee, H. and Huis in't Veld, J.H. (1997) Rapid and alternative screening methods for microbiological analysis. J. AOAC Int., 80, 934–940.Google Scholar
  4. 4.
    Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., and Chambers, J.P. (2000) Review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron., 15, 549.CrossRefGoogle Scholar
  5. 5.
    Ivnitski, D., O'Neil, D.J., Gattuso, A., Schlicht, R., Calidonna, M., and Fisher, R. (2003) Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. BioTechniques, 35, 862.Google Scholar
  6. 6.
    Schena, M. (2003) Microarrays as toxin sensors. Pharmacogenomics J., 3, 125.CrossRefGoogle Scholar
  7. 7.
    Stears, R.L., Martinsky, T., and Schena, M. (2003) Trends in microarray analysis. Nature Med., 9, 140.CrossRefGoogle Scholar
  8. 8.
    Stenger, D.A., Andreadis, J.D., Vora, G.J., and Pancrazio, J.J. (2002) Potential applications of DNA microarrays in biodefense-related diagnostics. Curr. Opin. Biotechnol., 13, 208–212.CrossRefGoogle Scholar
  9. 9.
    Cirino, N., Musser, K., and Egan, C. (2004) Multiplex diagnostic platforms for detection of biothreat agents. Expert. Rev. Mol. Diagn., 4, 841–857.CrossRefGoogle Scholar
  10. 10.
    O'Sullivan, C.K. (2002) Aptasensors – the future of biosensing? Anal. Bioanal. Chem., 372, 44–48.CrossRefGoogle Scholar
  11. 11.
    Rucker, V.C., Havenstrite, K.L., and Herr, A.E. (2005) Antibody microarrays for native toxin detection. Anal. Biochem., 339, 262–270.CrossRefGoogle Scholar
  12. 12.
    Rowe-Taitt, C.A., Cras, J.J., Patterson, J.P., Golden, J.P., and Ligler, F.S. (2000a) A ganglio-side-based assay for cholera toxin using an array biosensor. Anal. Biochem., 281, 123–133.CrossRefGoogle Scholar
  13. 13.
    Rowe-Taitt, C.A., Golden, J.P., Feldstein, M.J., Cras, J.J., Hoffman, K.E., and Ligler, F.S. (2000b) Array biosensor for detection of biohazards. Biosens. Bioelectron., 14, 785–794.CrossRefGoogle Scholar
  14. 14.
    Barry, R., Diggle, T., Terrett, J., and Soloviev, M. (2003) Competitive assay formats for high-throughput affinity arrays. J. Biomol. Screen., 8, 257–263.CrossRefGoogle Scholar
  15. 15.
    Gehring, A.G., Albin, D.M., Bhunia, A.K., Reed, S.A., Tu, S.-I., and Uknalis, J. (2006) Antibody microarray detection of Escherichia coli O157:H7: Quantification, assay limitations, and capture efficiency. Anal. Chem., 78, 6601–6607.CrossRefGoogle Scholar
  16. 16.
    Cai, H.Y., Lu, L., Muckle, C.A., Prescott, J.F., and Chen, S. (2005) Development of a novel protein microarray method for serotyping Salmonella enterica strains. J. Clin. Microbiol., 43, 3427–3430.CrossRefGoogle Scholar
  17. 17.
    Holmgren, J. (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature, 292, 413–417.CrossRefGoogle Scholar
  18. 18.
    Holmes, R.K. and Twiddy, E.M. (1983) Characterization of monoclonal antibodies that react with unique and cross-reacting determinants of cholera enterotoxin and its subunits. Infect. Immun., 42, 914–923.Google Scholar
  19. 19.
    Svennerholm, A.M., Wikstrom, M., Lindblad, M., and Holmgren, J. (1986) Monoclonal antibodies against Escherichia coli heat-stable toxin (STa) and their use in a diagnostic ST ganglioside GM1-enzyme-linked immunosorbent assay. J. Clin. Microbiol., 24, 585–590.Google Scholar
  20. 20.
    Dubey, R.S., Lindblad, M., and Holmgren, J. (1990) Purification of El Tor cholera enterotox-ins and comparisons with classical toxin. J. Gen. Microbiol., 136, 1839–1847.Google Scholar
  21. 21.
    Holmgren, J., Elwing, H., Fredman, P., and Svennerholm, L. (1980) Immunoassays based on plastic-adsorbed gangliosides. Adv. Exp. Med. Biol., 125, 339–348.Google Scholar
  22. 22.
    Charych, D., Cheng, Q., Reichert, A., Kuziemko, G., Stroh, M., Nagy, J.O., Spevak, W., and Stevens, R.C. (1996) A ‘litmus test’ for molecular recognition using artificial membranes. Chem. Biol., 3, 113–120.CrossRefGoogle Scholar
  23. 23.
    Athanassopoulou, N., Davies, R.J., Edwards, P.R., Yeung, D., and Maule, C.H. (1999) Cholera toxin and GM1: A model membrane study with IAsys. Biochem. Soc. Trans., 27, 340–343.Google Scholar
  24. 24.
    Fang, Y., Frutos, A.G., and Lahiri, J. (2002a) G-protein-coupled receptor microarrays. J. ChemBio-Chem., 3, 987–989.Google Scholar
  25. 25.
    Fang, Y., Frutos, A.G., and Lahiri, J. (2002b) Ganglioside microarrays for toxin detection. Langmuir, 19(5), 1500–1505, 2003.CrossRefGoogle Scholar
  26. 26.
    Fang, Y., Frutos, A.G., and Lahiri, J. (2002c) Membrane protein microarrays. J. Am. Chem. Soc., 124, 2394–2395.CrossRefGoogle Scholar
  27. 27.
    Rappuoli, R. and Montecucco, C. (Eds.) (1997) Guidebook to Protein Toxins and Their Use in Cell Biology, Oxford University Press, Oxford.Google Scholar
  28. 28.
    Cremer, P.S., and Boxer, S.G. (1999) Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B, 103, 2554–2559.CrossRefGoogle Scholar
  29. 29.
    Mrksich, M. (2000) A surface chemistry approach to studying cell adhesion. Chem. Soc. Rev., 29, 267–273.CrossRefGoogle Scholar
  30. 30.
    Song, X., Shi, J., and Swanson, B. (2000) Flow cytometry-based biosensor for detection of multivalent proteins. Anal. Biochem., 284, 35–41.CrossRefGoogle Scholar
  31. 31.
    Moran-Mirabal, J.M., Edel, J.B., Meyer, G.D., Throckmorton, D., Singh, A.K., and Craighead, H.G. (2005) Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys. J., 89, 296.CrossRefGoogle Scholar
  32. 32.
    Phillips, K.S. and Cheng, Q. (2005) Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly (dimethylsiloxane). Anal. Chem., 77, 327–334.CrossRefGoogle Scholar
  33. 33.
    Phillips, K.S., Dong, Y., Carter, D., and Cheng, Q. (2005) Stable and fluid ethylphospho-choline membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters. Anal. Chem., 77, 2960–2965.CrossRefGoogle Scholar
  34. 34.
    Dong, Y., Phillips, K.S., and Cheng, Q. (2006) Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). Lab Chip, 6, 675–681.CrossRefGoogle Scholar
  35. 35.
    Yamazaki, V., Sirenko, O., Schafer, R.J., Nguyen, L., Gutsmann, T., Brade, L., and Groves, J.T. (2005) Cell membrane array fabrication and assay technology. BMC Biotechnol., 16, 18–29.CrossRefGoogle Scholar
  36. 36.
    Schon, A. and Freire, E. (1989) Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry, 28, 5019–5024.CrossRefGoogle Scholar
  37. 37.
    Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Timofeev, E., Belgovskiy, A., and Mirzabekov, A. (1996) DNA sequencing by hybridization to microchip octa- and decanucle-otides extended by stacked pentanucleotides. Nucleic Acids Res, 1, 2998–3004.CrossRefGoogle Scholar
  38. 38.
    Guschin, D., Yershov, G., Zaslavsky, A., Gemmell, A., Shick, V., Proudnikov, D., Arenkov, P., and Mirzabekov, A. (1997) Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem., 1, 203–211.CrossRefGoogle Scholar
  39. 39.
    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A. (2000) Protein microchips: Use for immunoassay and enzymatic reactions. Anal. Biochem., 15, 123–131.CrossRefGoogle Scholar
  40. 40.
    Revzin, A., Russell, R.J., Yadavalli, V.K., Koh, W.G., Deister, C., Mellott, M.B., and Pishko, M.V. (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 17, 5440–5447.CrossRefGoogle Scholar
  41. 41.
    Angenendt, P., Glokler, J., Murphy, D., Lehrach, H., and Cahill, D.J. (2002) Toward optimized antibody microarrays: A comparison of current microarray support materials. Anal. Biochem., 309, 253–260.CrossRefGoogle Scholar
  42. 42.
    Stevens, P.W., Wang, C.H., and Kelso, D.M. (2003) Immobilized particle arrays: coalescence of planar- and suspension-array technologies. Anal. Chem., 75, 1141–1146.CrossRefGoogle Scholar
  43. 43.
    Rubina, A.Y., Dementieva, E.I., Stomakhin, A.A., Darii, E.L., Pan'kov, S.V., Barsky, V.E., Ivanov, S.M., Konovalova, E.V., and Mirzabekov, A.D. (2003) Hydrogel-based protein microchips: Manufacturing, properties, and applications. Biotechniques, 34, 1008–1022.Google Scholar
  44. 44.
    Charles, P.T., Taitt, C.R., Goldman, E.R., Rangasammy, J.G., and Stenger, D.A. (2004) Immobilization strategy and characterization of hydrogel-based thin films for interrogation of ligand binding with staphylococcal enterotoxin B (SEB) in a protein microarray format. Langmuir, 20, 270–272.CrossRefGoogle Scholar
  45. 45.
    Ligler, F.S., Taitt, C.R., Shriver-Lake, L.C., Sapsford, K.E., Shubin, Y., and Golden, J.P. (2003) Array biosensor for detection of toxins. Anal Bioanal Chem., 377, 469–477.CrossRefGoogle Scholar
  46. 46.
    Golden, J., Shriver-Lake, L., Sapsford, K., and Ligler, F.S. (2005) A “do-it-yourself” array biosensor. Methods, 37, 65–72.CrossRefGoogle Scholar
  47. 47.
    Rowe, C.A., Scruggs, S.B., Feldstein, M.J., Golden, J.P., and Ligler, F.S. (1999) An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem., 15, 433–439.CrossRefGoogle Scholar
  48. 48.
    Bhatia, S.K., Shriver-Lake, L.C., Prior, K.J., Georger, J.H., Calvert, J.M., Bredehorst, R., and Ligler, F.S. (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal. Biochem., 178, 408–413.CrossRefGoogle Scholar
  49. 49.
    Rowe, C.A., Tender, L.M., Feldstein, M.J., Golden, J.P., Scruggs, S.B., MacCraith, B.D., Cras, J.J., and Ligler, F.S. (1999) Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Anal. Chem., 1, 3846–3852.CrossRefGoogle Scholar
  50. 50.
    Hughes, J.M. and Tauxe, R.V. (1990) Principles and Practice of Infectious Diseases, 3rd ed. G.L. Mandell, R.G. Douglas, and J.E. Bennett (Eds.), New York: Churchill Livingstone.Google Scholar
  51. 51.
    Mattix, M.E., Hunt, R.E., Wilhelmsen, C.L., Johnson, A.J., and Baze, W.B. (1995) Aerosolized staphylococcal enterotoxin B-induced pulmonary lesions in rhesus monkeys (Macaca mulatta). Toxicol. Pathol., 23, 262–268.CrossRefGoogle Scholar
  52. 52.
    Drobkov, V.I., Abdullin, T.G., and Darmov, I.V. (1991) The use of immunoenzyme analysis in the laboratory diagnosis of plague. Zh. Mikrobiol. Epidemiol. Immunobiol., 10, 40–42.Google Scholar
  53. 53.
    Eisenberg, P.R., Sherman, L.A., Perez, J., and Jaffe, A.S. (1987) Relationship between elevated plasma levels of crosslinked fibrin degradation products (XL-FDP) and the clinical presentation of patients with myocardial infarction. Thromb. Res., 46, 109–120.CrossRefGoogle Scholar
  54. 54.
    Deitcher, S.R. and Eisenberg, P.R. (1993) Elevated concentrations of cross-linked fibrin degradation products in plasma. An early marker of gram-negative bacteremia. Chest, 103, 1107–1112.CrossRefGoogle Scholar
  55. 55.
    Shepherd, A.J., Hummitzsch, D.E., Leman, P.A., Swanepoel, R., and Searle, L.A. (1986) Comparative tests for detection of plague antigen and antibody in experimentally infected wild rodents. J. Clin. Microbiol., 24, 1075–1078.Google Scholar
  56. 56.
    Ngundi, M.M., Taitt, C.R., McMurry, S.A., Kahne, D., and Ligler, F.S. (2006) Detection of bacterial toxins with monosaccharide arrays. Biosens. Bioelectron., 21, 1195–1201.CrossRefGoogle Scholar
  57. 57.
    Song, X. and Swanson, B.I. (1999) Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions. Anal. Chem., 71, 2097–2107.CrossRefGoogle Scholar
  58. 58.
    Singh, A.K., Harrison, S.H., and Schoeniger, J.S. (2000) Gangliosides as receptors for biological toxins: Development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Anal. Chem., 72, 6019.CrossRefGoogle Scholar
  59. 59.
    Laser, D.J., Hardham, C.T., and Kim, J. (2006) Flow-chamber microarray detection of malarial antigens In: Solid-State Sensors, Actuators, and Microsystems Workshop, Spangler, L. and Kenny, T.W. (Eds.). Transducers Research Foundation, Hilton Head Island, SC, pp. 408–409.Google Scholar
  60. 60.
    Phillips, K.S., Han, J.H., Martinez, M., Wang, Z., Carter, D., and Cheng, Q. (2006) Nanoscale glassification of gold substrates for surface plasmon resonance analysis of protein toxins with supported lipid membranes. Anal. Chem., 78, 596–603.CrossRefGoogle Scholar
  61. 61.
    Rucker, V.C., Havenstrite, K.L., Simmons, B.A., Sickafoose, S.M., Herr, A.E., and Shediac, R. (2005) Functional antibody immobilization on 3-dimensional polymeric surfaces generated by reactive ion etching. Langmuir, 21, 7621.CrossRefGoogle Scholar
  62. Kigutha, H., 1994. “Guidelines for cholera control: By World Health Organisation (Ed.) 61 pp., ISBN 92-4-154449-X,” Health Policy, Elsevier, vol. 27(2), pages 197–197, February.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amy E. Herr
    • 1
  1. 1.Department of Bioengineering and Biological SciencesUniversity of California-BerkeleyBerkeley

Personalised recommendations