Advertisement

Microarrays pp 139-167 | Cite as

Peptide-Based Microarray

  • Resmi C. Panicker
  • Hongyan Sun
  • Grace Y. J. Chen
  • Shao Q. Yao
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

The peptide array has come into focus as an emerging screening platform for large-scale protein detection and activity studies. The materials presented in this chapter examine the recent developments in the field of peptide microarrays with special emphasis on the generation and applications of high-density arrays of peptides on glass slides.

Keywords

Peptide Nucleic Acid Peptide Substrate Peptide Library Peptide Array Supramolecular Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Venter, J.C. et al. (2001) The sequence of the human genome. Science, 291, 1304–1351.CrossRefGoogle Scholar
  2. 2.
    Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2, 3–10.CrossRefGoogle Scholar
  3. 3.
    Gauss, C., Kalkum, M., Lowe, M., Lehrach, M.H., and Klose, J. (1999) Analysis of the mouse proteome. (I) Brain proteins: Separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis, 20, 575–600.CrossRefGoogle Scholar
  4. 4.
    Unlu, M., Morgan, M.E., and Minden, J.S. (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.CrossRefGoogle Scholar
  5. 5.
    Steinberg, T.H., Pretty, K., Berggren, K.N., Kemper, C., Jones, L., Diwu, Z., Haugland, R.P., and Pattonet, W.F. (2001) Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics, 1, 841–855.CrossRefGoogle Scholar
  6. 6.
    Washburn, M.P., Wolters, D., and Yates, J.R. (2001) Large-scale analysis of the yeast pro-teome by multidimensional protein identification technology. Nat. Biotechnol., 19, 242–247.CrossRefGoogle Scholar
  7. 7.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994–999.CrossRefGoogle Scholar
  8. 8.
    Drews, J. (2000) Drug discovery: A historical perspective. Science, 287, 1960–1964.CrossRefGoogle Scholar
  9. 9.
    Hanash, S. (2003) Disease proteomics. Nature, 422, 226–232.CrossRefGoogle Scholar
  10. 10.
    Hu, Y., Uttamchandani, M., and Yao, S.Q. (2006) Microarray: A versatile platform for high-throughput functional proteomics. Comb. Chem. High Throughput Screening, 9, 203–212.CrossRefGoogle Scholar
  11. 11.
    Chen, G.Y.J., Uttamchandani, M., Lue, R.Y.P., Lesaicherre, M.L., and Yao, S.Q. (2003a) Array-based technologies and their applications in proteomics. Curr. Top. Med. Chem., 3, 705–724.CrossRefGoogle Scholar
  12. 12.
    Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol., 12, 59–64.CrossRefGoogle Scholar
  13. 13.
    Li, M. (2000) Applications of display technology in protein analysis. Nat. Biotechnol., 18, 1251–1256.CrossRefGoogle Scholar
  14. 14.
    Southern, E.M. (1988) Analysing polynucleotide sequences. Great Britain Patent Application GB 8810400.5.Google Scholar
  15. 15.
    Geysen, H.M., Melven, R.H., and Barteling, S.J. (1984) Use of peptide synthesis to probe viral antigen54s for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U.S.A., 81, 3998–4002.CrossRefGoogle Scholar
  16. 16.
    Frank, R. (1992) Spot-synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217–9232.CrossRefGoogle Scholar
  17. 17.
    Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature, 405, 827–836.CrossRefGoogle Scholar
  20. 20.
    Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M., and Knapp, R.J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 354, 82–84.CrossRefGoogle Scholar
  21. 21.
    Lam, K.S., Lebl, M., and Krchnak, V. (1997) The “one-bead-one-compound” combinatorial library method. Chem. Rev., 1997, 97. 411–448.CrossRefGoogle Scholar
  22. 22.
    Houghten, R.A. (1984) General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigenantibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U.S.A., 82, 5131–5135.CrossRefGoogle Scholar
  23. 23.
    MacBeath, G., Koehler, A.N., and Schreiber, S.L. (1999) Printing small molecules as microar-rays and detecting protein-ligand interactions en masse. J. Am. Chem. Soc., 121, 7967–7968.CrossRefGoogle Scholar
  24. 24.
    Macbeath, G. and Schreiber, S.L. (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760–1763.Google Scholar
  25. 25.
    Falsey, J.R., Renil, R., Park, S., Li, S., and Lam, K.S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconj. Chem., 12, 346–353.CrossRefGoogle Scholar
  26. 26.
    Houseman, B.T., Huh, J.H., Kron, S.J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol., 20, 270–274.CrossRefGoogle Scholar
  27. 27.
    Houseman, B.T., Gawalt, E.S., and Mrksich, M. (2004) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips Langmuir, 19, 1522–1531.CrossRefGoogle Scholar
  28. 28.
    Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y.J., and Yao, S.Q. (2002a) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett., 12, 2079–2083.CrossRefGoogle Scholar
  29. 29.
    Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y.J., and Yao, S.Q. (2002b) Antibody-based fluo rescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett., 12, 2085–2088.CrossRefGoogle Scholar
  30. 30.
    Uttamchandani, M., Chan, E.W.S., Chen, G.Y.J., and Yao, S.Q. (2003) Combinatorial peptide microarrays for the rapid determination of kinase specificity. Bioorg. Med. Chem. Lett., 2003, 13, 2997–3000.CrossRefGoogle Scholar
  31. 31.
    Salisbury, C.M., Maly, D.J., and Ellman, J.A. (2002) Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Soc., 124, 14868–14870.CrossRefGoogle Scholar
  32. 32.
    Zhu, Q., Uttamchandani, M., Li, D.B., Lesaicherre, M.L., and Yao, S.Q. (2003) Enzymatic profiling system in a small-molecule microarray. Org. Lett., 2003, 5, 1257–1260.CrossRefGoogle Scholar
  33. 33.
    Soellner, M.B., Dickson, K.A., Nilsson, B.L., and Raines, R.T. (2003) site-specific protein immobilization by Staudinger ligation. J. Am. Chem. Soc., 125, 11790–11791.CrossRefGoogle Scholar
  34. 34.
    Oliver, C., Hot, D., Huot, L., Oliver, N., El-Mahdi, O., Gouyette, C., Huynh-Dinh, T., Gras-Masse, H., Leomione, Y., and Melynk, O. (2003) α-Oxo semicarbazone peptide or oligode-oxynucleotide microarrays. Bioconj. Chem., 14, 430–439.CrossRefGoogle Scholar
  35. 35.
    Newman, J.R.S. and Keating, A.E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science, 300, 2097–2101.CrossRefGoogle Scholar
  36. 36.
    Kiyonaka, S., Sada, K., Yoshimura, I., Shinkai, S., Kato, N., and Hamachi, I. (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat. Materials, 3, 58–64.CrossRefGoogle Scholar
  37. 37.
    Li, S., Bowerman, D., Marthandan, N., Klyza, S., Luebke, K.J., Garner, H.R., and Kodadek, T. (2004) Photolithographic synthesis of peptoids. J. Am. Chem. Soc., 126, 4088–4089.CrossRefGoogle Scholar
  38. 38.
    Cheng, C.W., Lin, K.C., Pan, F.M., Sinchaikul, S., Wong, C.W., Su, W.C., Hsu, C.H., and Chen, S.T. (2004) Facile synthesis of metal-chelating peptides on chip for protein array. Bioorg. Med. Chem. Lett., 14, 1987–1990.CrossRefGoogle Scholar
  39. 39.
    Usui, K., Tomizaki, K., Ohyama, T., Nokihara, K., and Mihara, H. (2006) A novel peptide microarray for protein detection and analysis utilizing a dry peptide array system. Mol. BioSyst., 2, 113–121.CrossRefGoogle Scholar
  40. 40.
    Ofir et al. (2005) Versatile protein microarray based on carbohydrate-binding modules, Proteomics, 5, 1806–1816.CrossRefGoogle Scholar
  41. 41.
    Cha, T., Guo, A., Zhu, X.Y. (2005) Enzymatic activity on a chip: The critical role of protein orientation. Proteomics, 5, 416–419.CrossRefGoogle Scholar
  42. 42.
    Beyer, M., Felgenhauer, T., Bischoff, F.R., Breitling, F., and Stadler, V. (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials, 27, 3505–3514.CrossRefGoogle Scholar
  43. 43.
    Wegner, G.J., Wark, A.W., Lee, H.J., Codner, E., Saeki, T., Fang, S., and Corn, R.M. (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal. Chem., 76, 5677–5684CrossRefGoogle Scholar
  44. 44.
    Su, J., Bringer, M.R., Ismagilov, R.F., and Mrksich, M. (2005) Combining microfluidic networks and peptide arrays for multi-enzyme assays. J. Am. Chem. Soc., 127, 7280–7281.CrossRefGoogle Scholar
  45. 45.
    Combimatrix.com.Google Scholar
  46. 46.
    Cho, C.Y., Moran, E.J., Cherry, S.R., Stephans, J.C., Fodor, S.P.A., Adams, C.L., Sundaram, A., Jacobs, J.W., and Schultz, P.G. (1993) An unnatural biopolymer. Science, 261, 1303–1305.CrossRefGoogle Scholar
  47. 47.
    Abell, A. (1999) Advances in amino acid mimetics and peptidomimetics, JAI Press, Greenwich, CT (USA)Google Scholar
  48. 48.
    Lipshutz, R.J. (1993) Likelihood DNA sequencing by hybridization. J. Biomol. Struct. Dynamics, 11, 637–653.Google Scholar
  49. 49.
    Fodor, S.P.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L. (1993) Multiplexed biochemical assays with biological chips. Nature, 364, 555–556.CrossRefGoogle Scholar
  50. 50.
    Sheldon, E.L., Briggs, J., Bryan, R., Cronin, M., Oval, M., McGall, G., Gentalen, E., Miyada, C.G., Masino, R., Bodlin, D., Pease, A., Solas, D., and Fodor, S.P.A. (1993) Matrix DNA hybridization. Clin. Chem., 39, 718–719.Google Scholar
  51. 51.
    Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A., 91, 5022–5026.CrossRefGoogle Scholar
  52. 52.
    Pellois, J.P., Zhou, X.C., Srivannavit, O., Zhou, T.C., Gulari, E., and Gao, X.L. (2002) Individually addressable parallel peptide synthesis on microchips. Nat. Biotechnol., 20, 922–926.CrossRefGoogle Scholar
  53. 53.
    Frank, R. (2002) The SPOT-synthesis technique: Synthetic peptide arrays on membrane supports–Principles and applications. J. Immunol. Methods, 267, 13–26 and references cited therein.CrossRefGoogle Scholar
  54. 54.
    Dostmann, W.R.G., Taylor, M.S., Nickl, C.K., Brayden, J.E., Frank, R., and Tegge, W.J. (2000) Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Iα inhibit NO-induced cerebral dilation. Proc. Natl. Acad. Sci. U.S.A., 97, 14772.CrossRefGoogle Scholar
  55. 55.
    Toepert, F., Knaute, T., Guffler, S., Pires, J.R., Matzdorf, T., Oschkinat, H., and Schneider-Mergener, J. (2003) Combining SPOT synthesis and native peptide ligation to create large arrays of WW protein domains. J. Angew. Chem. Intl. Ed., 42, 1136–1140.CrossRefGoogle Scholar
  56. 56.
    Bes, C., Briant-Longuet, L., Cerutti, M., Heitz, F., Troadec, S., Pugniere, M., Roquet, F., Molina, F., Casset, F., Bresson, D., Peraldi-Roux, S., Devauchelle, G., Devaux, C., Granier, C., and Chardes, T. (2003) Mapping the paratope of anti-CD4 recombinant fab 13B8.2 by combining parallel peptide synthesis and site-directed mutagenesis. J. Biol. Chem., 278, 14265–14273.CrossRefGoogle Scholar
  57. 57.
    Muralidhar, R. and Kodadek, T. (2005) Protein “fingerprinting” in complex mixtures with peptoid microarrays. Proc. Natl. Acad. Sci. U.S.A., 102, 12672–12677.CrossRefGoogle Scholar
  58. 58.
    Lue, R.Y.P., Chen, G.Y.J., Hu, Y., Zhu, Q., and Yao, S.Q. (2004) Versatile protein biotinylation strategies for potential high-throughput proteomics. J. Am. Chem. Soc., 126, 1055–1062.CrossRefGoogle Scholar
  59. 59.
    Goddard, J.P. and Reymond, J.L. (2004) Recent advances in enzyme assays. Trends Biotechnol.,, 22, 363–370.CrossRefGoogle Scholar
  60. 60.
    Chiari, M., Cretich, M., Corti, A., Damin, F., Pirri, G., and Longhi, R. (2005) Peptide micro-arrays for the characterization of antigenic regions of human chromogranin A. Proteomics, 5, 3600–3603.CrossRefGoogle Scholar
  61. 61.
    Andresen, H., Grötzinger, C., Zarse, K., Kreuzer, O.J., Ehrentreich-Förster, E., and Bier, F.F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics, 6, 1376–1384.CrossRefGoogle Scholar
  62. 62.
    Songyang, Z., Carraway III, K.L., Eck, M.J., Harrison, S.C., Feldman, R.A., Mohammadi, M., Schlessinger, J., Hubbard, S.R., Smith, D.P., Eng, E., Lorenzo, M.J., Ponder, B.A.J., Mayer, B.J., and Cantley, L.C. (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signaling. Nature, 373, 536–539.CrossRefGoogle Scholar
  63. 63.
    Pawson, T. and Scott, J.D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science, 278, 2075–2080.CrossRefGoogle Scholar
  64. 64.
    Caserine, G. (1992) Peptide display on filamentous phage capsids: A new powerful tool to study protein–ligand interaction. FEBS Lett., 307, 66–70.CrossRefGoogle Scholar
  65. 65.
    Tegge, W., Frank, R., Hofmann, F., and Dostmann, R.G. (1995) Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry, 34, 10569–10577.CrossRefGoogle Scholar
  66. 66.
    Sills M.A., Weiss, D., Pham, Q., Schweitzer, R., Wu, X., and Wu, J.Z.J. (2002) Comparison of assay technologies for a tyrosine kinase assay generates different results in high throughput screening. J. Biomol. Screening, 7, 191–214.CrossRefGoogle Scholar
  67. 67.
    Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet., 26,283–289.CrossRefGoogle Scholar
  68. 68.
    Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M., and Reimer, U. (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J. Mol. Biol., 336, 307–311.CrossRefGoogle Scholar
  69. 69.
    Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, M., Alessi, D.R., and Schneider-Mergener, J. (2004) High-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Ed., 43, 2671–2674.CrossRefGoogle Scholar
  70. 70.
    Buss, H., Dörrie, A., Schmitz, M.L., Frank, R., Livingstone, M., Resch, K., and Kracht, M. (2004) Phosphorylation of serine 468 by GSK-3 beta negatively regulates basal p65 NF-kappa B activity. J. Biol. Chem., 279, 49571–49574.CrossRefGoogle Scholar
  71. 71.
    Wang, Z., Lee, J., Cossins, A.R., and Brust, M. (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal. Chem., 77, 5770–5774.CrossRefGoogle Scholar
  72. 72.
    Deng, S. (2000) Substrate specificity of human collagenase 3 assessed using a phage-dis-played peptide library. J. Biol. Chem., 275, 31422–31427.CrossRefGoogle Scholar
  73. 73.
    Nazif, T. and Bogyo, M. (2001) Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc. Natl. Acad. Sci. U.S.A., 98, 2967–2972.CrossRefGoogle Scholar
  74. 74.
    Benjamin, E.T., Huang, L.L., Piro, E.T., and Cantley, L.C. (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol., 19, 661–667.CrossRefGoogle Scholar
  75. 75.
    Benjamin, E.T. and Cantley, L.C. (2004) Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes. Methods, 32, 398–405.CrossRefGoogle Scholar
  76. 76.
    Meldal, M., Svendsen, I., Breddam, K., and Auzanneau, F.I. (1994) Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc. Natl. Acad. Sci. U.S.A., 1994, 91, 3314–3318.CrossRefGoogle Scholar
  77. 77.
    Leon, S., Quarrell, R., and Lowe, G. (1998) Evaluation of resins for on-bead screening: A study of papain and chymotrypsin specificity using pega-bound combinatorial peptide libraries. Bioorg. Med. Chem. Lett., 8, 2997–3002.CrossRefGoogle Scholar
  78. 78.
    Chen, G.Y.J., Uttamchandani, M., Zhu, Q., Wang, G. and Yao, S.Q. (2003b) Developing a strategy for activity-based detection of enzymes in a protein microarray. Chem. Bio. Chem., 2003, 4, 336–339.Google Scholar
  79. 79.
    Gosalia, D.N. and Diamond, S.L. (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc. Natl. Acad. Sci. U.S.A., 100, 8721–8726.CrossRefGoogle Scholar
  80. 80.
    Park, C.B. and Clark, D.S. (2002) Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnol. Bioeng., 78, 229–235.CrossRefGoogle Scholar
  81. 81.
    Gosalia, D.N., Salisbury, C.M., Maly, D.J., Ellman, J.A., and Diamond, S.L. (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics, 5, 1292–1298.CrossRefGoogle Scholar
  82. 82.
    Uttamchandani, M., Huang, X., Chen, G.Y.J., and Yao, S.Q. (2005) Nanodroplet profiling of enzymatic activities in a microarray. Bioorg. Med. Chem. Lett., 15, 2447–2451.CrossRefGoogle Scholar
  83. 83.
    Wang. J., Uttamchandani, M., and Yao, S.Q. (2006) Activity-based high-throughput profiling of metalloprotease inhibitors using small molecule microarrays. Chem. Commun., 717–719.Google Scholar
  84. 84.
    Zang, X., Yu, Z., and Chu, Y.-H. (1998) Tight-binding streptavidin ligands from a cyclic peptide library. Bioorg. Med. Chem. Lett., 8, 2327–2332.CrossRefGoogle Scholar
  85. 85.
    Yu, Z., Tu, J., and Chu, Y.-H. (1997) Confirmation of crossreactivity between lyme antibody H9724 and human heat shock protein 60 by a combinatorial approach. Anal. Chem., 69, 4515–4518.CrossRefGoogle Scholar
  86. 86.
    Chen, B., Bestetti, G., Day, R.M., and Turner, A.P.F. (1998) The synthesis and screening of a combinatorial peptide library for affinity ligands for glycosylated haemoglobin. Biosens. Bioelectron., 13, 779–785.CrossRefGoogle Scholar
  87. 87.
    Barnes, C.A.S. and Clemmer, D.E. (2001) Assessment of purity and screening of peptide libraries by nested ion mobility- TOFMS: identification of RNase S-protein binders. Anal. Chem., 73, 424–433.CrossRefGoogle Scholar
  88. 88.
    Verdoliva, A., Marasco, D., De Capua, A., Saporito, A., Bellofiore, P., Manfredi, V., Fattorusso, R., Pedone, C., and Ruvo, M. (2005) A new ligand for immunoglobulin G sub-domains by screening of a synthetic peptide library. Chem. Bio. Chem., 6, 1242–1253.Google Scholar
  89. 89.
    Powell, K.D. and Fitzgerald, M.C. (2004) High-throughput screening assay for the tunable selection of protein ligands. J. Comb. Chem., 6, 262–269.CrossRefGoogle Scholar
  90. 90.
    Duburcq, X., Olivier, C., Malingue, F., Desmet, R., Bouzidi, A., Zhou, F., Auriault, C., Gras-Masse, H., and Melnyk, O. (2004) Peptide-protein microarrays for the simultaneous detection of pathogen infections. Biocon. Chem., 15, 307–316.CrossRefGoogle Scholar
  91. 91.
    Takahashi, M., Nokihara, K., and Mihara, H. (2000) Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem. Biol., 10, 53–60.CrossRefGoogle Scholar
  92. 92.
    Rodriguez, M., Li, S. S.–C., Harper, J.W., and Songyang, Z. (2004) An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J. Biol. Chem., 279, 8802–8807.CrossRefGoogle Scholar
  93. 93.
    Copeland, G.T. and Miller, S.J. (2001) Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: An approach to kinetic resolution of secondary alcohols of broad structural scope. J. Am. Chem. Soc., 123, 6496–6502.CrossRefGoogle Scholar
  94. 94.
    Lingard, I., Bhalay, G., and Bradley, M. (2003) Dyad beads and the combinatorial discovery of catalysts. Chem. Commun., 2310–2311.Google Scholar
  95. 95.
    Xian, M., Fatima, Z., Zhang, W., Fang, J., Li, H., Pei, D., Loo, J., Stevenson, T., and Wang, P.G. (2004) Identification of α-galactosyl epitope mimetics through rapid generation and screening of C-linked glycopeptide library. J. Comb. Chem., 6, 126–134.CrossRefGoogle Scholar
  96. 96.
    Ying, L., Liu, R., Zhang, J., Lam, K., Lebrilla, C.B., and Gervay- Hague, J. (2005) A topologically segregated one-bead-one-compound combinatorial glycopeptide library for identification of lectin ligands. J. Comb. Chem., 7, 372–384.CrossRefGoogle Scholar
  97. 97.
    Nielsen, P.E. (2001) Peptide nucleic acid: A versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol., 12, 16–20.CrossRefGoogle Scholar
  98. 98.
    Weiler, J., Gausepohl, H., Hauser, N., Jensen, O.N., and Hoheisel, J.D. (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res., 25, 2792–2799.CrossRefGoogle Scholar
  99. 99.
    Brandt, O., Feldner, J., Stephan, A., Schroè, M., Arlinghaus, H.F., Hoheisel, J.D., and Jacob, A. (2003) PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res., 2003, 31, e119.CrossRefGoogle Scholar
  100. 100.
    Winssinger, N., Harris, J.L., Backes, B.J., and Schultz, P.G. (2001) From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Intl. Ed., 40, 3152–3155.CrossRefGoogle Scholar
  101. 101.
    Winssinger, N., Ficarro, S., Schultz, P.G., and Harris, J.L. (2002) Profiling protein function with small molecule microarrays. Proc. Natl. Acad. Sci. U.S.A., 99, 11139–11144.CrossRefGoogle Scholar
  102. 102.
    Winssinger, N., Damoiseaux, R., Tully, D.C., Geierstanger, B.H., Burdick, K., and Harris, J.L. (2004) PNA-encoded protease substrate microarrays. Chem. Biol., 11, 1351–1360.CrossRefGoogle Scholar
  103. 103.
    Pennington, M.E., Lam, K.S., and Cress, A.E. (1996) The use of a combinatorial library method to isolate human tumor cell adhesion peptides. Mol. Divers., 2, 19–28.CrossRefGoogle Scholar
  104. 104.
    Otvos, L.J., Pease, A.M., Bokonyi, K., Giles-Davies, W., Rogers, M.E., Hintz, P.A., Hoffmann, R., and Ertl, H.C.J. (2000) In situ stimulation of a T helper cell hybridoma with a cellulose-bound peptide antigen. J. Immunol. Methods, 233, 95–105.CrossRefGoogle Scholar
  105. 105.
    Stoevesandt, O., Elbs, M., Köhler, K., Lellouch, A.C., Fischer, R., André, T., and Brock, R. (2005) Peptide microarrays for the detection of molecular interactions in cellular signal transduction. Proteomics, 5, 2010–2017.CrossRefGoogle Scholar
  106. 106.
    Panse, S., Dong, L., Burian, A., Carus, R., Schutkowski, M., Reimer, U., and Schneider Mergener, J. (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol. Divers., 8, 291–299.CrossRefGoogle Scholar
  107. 107.
    Yeo, S.Y.D., Panicker, R.C., Tan, L.P., and Yao, S.Q. (2004) Strategies for immobilization of biomolecules in a microarray. Comb. Chem. High Throughput Screening, 7, 213–221.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Resmi C. Panicker
    • 1
  • Hongyan Sun
    • 1
  • Grace Y. J. Chen
    • 1
  • Shao Q. Yao
    • 1
  1. 1.Departments of Chemistry and Biological Sciences, Medicinal Chemistry Program of the Office of Life SciencesNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations