Skip to main content
Book cover

Microarrays pp 139–167Cite as

Peptide-Based Microarray

  • Chapter

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The peptide array has come into focus as an emerging screening platform for large-scale protein detection and activity studies. The materials presented in this chapter examine the recent developments in the field of peptide microarrays with special emphasis on the generation and applications of high-density arrays of peptides on glass slides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An N-terminal cysteine or biotin may be added to virtually any synthetic peptide. This makes it possible to apply peptides synthesized from various combinatorial strategies, such as positional-scanning libraries, onto an array format. Within reasonable lengths, under 10 amino acid residues, Fmoc synthesis yields sufficiently pure peptides that may be directly applied to an array without extensive purification (also dependent on the nature of the residues within the peptide and quality of synthesis).

  2. 2.

    The carboxyl moiety of the coumarin was first activated by NHS/DCC/DIEA followed by direct spotting on the slides.

  3. 3.

    The presence of periodate and BSA in the reaction mix does not interfere with enzymatic activity but aids in the efficient oxidation sodium periodate oxidation of the 1, 2 diol/1, 2-aminoalcohol linker and the subsequent β-elimination.

References

  1. Venter, J.C. et al. (2001) The sequence of the human genome. Science, 291, 1304–1351.

    Article  CAS  Google Scholar 

  2. Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2, 3–10.

    Article  CAS  Google Scholar 

  3. Gauss, C., Kalkum, M., Lowe, M., Lehrach, M.H., and Klose, J. (1999) Analysis of the mouse proteome. (I) Brain proteins: Separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis, 20, 575–600.

    Article  CAS  Google Scholar 

  4. Unlu, M., Morgan, M.E., and Minden, J.S. (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.

    Article  CAS  Google Scholar 

  5. Steinberg, T.H., Pretty, K., Berggren, K.N., Kemper, C., Jones, L., Diwu, Z., Haugland, R.P., and Pattonet, W.F. (2001) Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics, 1, 841–855.

    Article  CAS  Google Scholar 

  6. Washburn, M.P., Wolters, D., and Yates, J.R. (2001) Large-scale analysis of the yeast pro-teome by multidimensional protein identification technology. Nat. Biotechnol., 19, 242–247.

    Article  CAS  Google Scholar 

  7. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994–999.

    Article  CAS  Google Scholar 

  8. Drews, J. (2000) Drug discovery: A historical perspective. Science, 287, 1960–1964.

    Article  CAS  Google Scholar 

  9. Hanash, S. (2003) Disease proteomics. Nature, 422, 226–232.

    Article  CAS  Google Scholar 

  10. Hu, Y., Uttamchandani, M., and Yao, S.Q. (2006) Microarray: A versatile platform for high-throughput functional proteomics. Comb. Chem. High Throughput Screening, 9, 203–212.

    Article  CAS  Google Scholar 

  11. Chen, G.Y.J., Uttamchandani, M., Lue, R.Y.P., Lesaicherre, M.L., and Yao, S.Q. (2003a) Array-based technologies and their applications in proteomics. Curr. Top. Med. Chem., 3, 705–724.

    Article  CAS  Google Scholar 

  12. Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol., 12, 59–64.

    Article  CAS  Google Scholar 

  13. Li, M. (2000) Applications of display technology in protein analysis. Nat. Biotechnol., 18, 1251–1256.

    Article  CAS  Google Scholar 

  14. Southern, E.M. (1988) Analysing polynucleotide sequences. Great Britain Patent Application GB 8810400.5.

    Google Scholar 

  15. Geysen, H.M., Melven, R.H., and Barteling, S.J. (1984) Use of peptide synthesis to probe viral antigen54s for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U.S.A., 81, 3998–4002.

    Article  CAS  Google Scholar 

  16. Frank, R. (1992) Spot-synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron, 48, 9217–9232.

    Article  CAS  Google Scholar 

  17. Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773.

    Article  CAS  Google Scholar 

  18. www.affymetrix.com.

  19. Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature, 405, 827–836.

    Article  CAS  Google Scholar 

  20. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M., and Knapp, R.J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 354, 82–84.

    Article  CAS  Google Scholar 

  21. Lam, K.S., Lebl, M., and Krchnak, V. (1997) The “one-bead-one-compound” combinatorial library method. Chem. Rev., 1997, 97. 411–448.

    Article  CAS  Google Scholar 

  22. Houghten, R.A. (1984) General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigenantibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U.S.A., 82, 5131–5135.

    Article  Google Scholar 

  23. MacBeath, G., Koehler, A.N., and Schreiber, S.L. (1999) Printing small molecules as microar-rays and detecting protein-ligand interactions en masse. J. Am. Chem. Soc., 121, 7967–7968.

    Article  CAS  Google Scholar 

  24. Macbeath, G. and Schreiber, S.L. (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760–1763.

    CAS  Google Scholar 

  25. Falsey, J.R., Renil, R., Park, S., Li, S., and Lam, K.S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconj. Chem., 12, 346–353.

    Article  CAS  Google Scholar 

  26. Houseman, B.T., Huh, J.H., Kron, S.J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol., 20, 270–274.

    Article  CAS  Google Scholar 

  27. Houseman, B.T., Gawalt, E.S., and Mrksich, M. (2004) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips Langmuir, 19, 1522–1531.

    Article  CAS  Google Scholar 

  28. Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y.J., and Yao, S.Q. (2002a) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett., 12, 2079–2083.

    Article  CAS  Google Scholar 

  29. Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y.J., and Yao, S.Q. (2002b) Antibody-based fluo rescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett., 12, 2085–2088.

    Article  CAS  Google Scholar 

  30. Uttamchandani, M., Chan, E.W.S., Chen, G.Y.J., and Yao, S.Q. (2003) Combinatorial peptide microarrays for the rapid determination of kinase specificity. Bioorg. Med. Chem. Lett., 2003, 13, 2997–3000.

    Article  CAS  Google Scholar 

  31. Salisbury, C.M., Maly, D.J., and Ellman, J.A. (2002) Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Soc., 124, 14868–14870.

    Article  CAS  Google Scholar 

  32. Zhu, Q., Uttamchandani, M., Li, D.B., Lesaicherre, M.L., and Yao, S.Q. (2003) Enzymatic profiling system in a small-molecule microarray. Org. Lett., 2003, 5, 1257–1260.

    Article  CAS  Google Scholar 

  33. Soellner, M.B., Dickson, K.A., Nilsson, B.L., and Raines, R.T. (2003) site-specific protein immobilization by Staudinger ligation. J. Am. Chem. Soc., 125, 11790–11791.

    Article  CAS  Google Scholar 

  34. Oliver, C., Hot, D., Huot, L., Oliver, N., El-Mahdi, O., Gouyette, C., Huynh-Dinh, T., Gras-Masse, H., Leomione, Y., and Melynk, O. (2003) α-Oxo semicarbazone peptide or oligode-oxynucleotide microarrays. Bioconj. Chem., 14, 430–439.

    Article  CAS  Google Scholar 

  35. Newman, J.R.S. and Keating, A.E. (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science, 300, 2097–2101.

    Article  CAS  Google Scholar 

  36. Kiyonaka, S., Sada, K., Yoshimura, I., Shinkai, S., Kato, N., and Hamachi, I. (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat. Materials, 3, 58–64.

    Article  CAS  Google Scholar 

  37. Li, S., Bowerman, D., Marthandan, N., Klyza, S., Luebke, K.J., Garner, H.R., and Kodadek, T. (2004) Photolithographic synthesis of peptoids. J. Am. Chem. Soc., 126, 4088–4089.

    Article  CAS  Google Scholar 

  38. Cheng, C.W., Lin, K.C., Pan, F.M., Sinchaikul, S., Wong, C.W., Su, W.C., Hsu, C.H., and Chen, S.T. (2004) Facile synthesis of metal-chelating peptides on chip for protein array. Bioorg. Med. Chem. Lett., 14, 1987–1990.

    Article  CAS  Google Scholar 

  39. Usui, K., Tomizaki, K., Ohyama, T., Nokihara, K., and Mihara, H. (2006) A novel peptide microarray for protein detection and analysis utilizing a dry peptide array system. Mol. BioSyst., 2, 113–121.

    Article  CAS  Google Scholar 

  40. Ofir et al. (2005) Versatile protein microarray based on carbohydrate-binding modules, Proteomics, 5, 1806–1816.

    Article  CAS  Google Scholar 

  41. Cha, T., Guo, A., Zhu, X.Y. (2005) Enzymatic activity on a chip: The critical role of protein orientation. Proteomics, 5, 416–419.

    Article  CAS  Google Scholar 

  42. Beyer, M., Felgenhauer, T., Bischoff, F.R., Breitling, F., and Stadler, V. (2006) A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials, 27, 3505–3514.

    Article  CAS  Google Scholar 

  43. Wegner, G.J., Wark, A.W., Lee, H.J., Codner, E., Saeki, T., Fang, S., and Corn, R.M. (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal. Chem., 76, 5677–5684

    Article  CAS  Google Scholar 

  44. Su, J., Bringer, M.R., Ismagilov, R.F., and Mrksich, M. (2005) Combining microfluidic networks and peptide arrays for multi-enzyme assays. J. Am. Chem. Soc., 127, 7280–7281.

    Article  CAS  Google Scholar 

  45. Combimatrix.com.

    Google Scholar 

  46. Cho, C.Y., Moran, E.J., Cherry, S.R., Stephans, J.C., Fodor, S.P.A., Adams, C.L., Sundaram, A., Jacobs, J.W., and Schultz, P.G. (1993) An unnatural biopolymer. Science, 261, 1303–1305.

    Article  CAS  Google Scholar 

  47. Abell, A. (1999) Advances in amino acid mimetics and peptidomimetics, JAI Press, Greenwich, CT (USA)

    Google Scholar 

  48. Lipshutz, R.J. (1993) Likelihood DNA sequencing by hybridization. J. Biomol. Struct. Dynamics, 11, 637–653.

    CAS  Google Scholar 

  49. Fodor, S.P.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., and Adams, C.L. (1993) Multiplexed biochemical assays with biological chips. Nature, 364, 555–556.

    Article  CAS  Google Scholar 

  50. Sheldon, E.L., Briggs, J., Bryan, R., Cronin, M., Oval, M., McGall, G., Gentalen, E., Miyada, C.G., Masino, R., Bodlin, D., Pease, A., Solas, D., and Fodor, S.P.A. (1993) Matrix DNA hybridization. Clin. Chem., 39, 718–719.

    Google Scholar 

  51. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A., 91, 5022–5026.

    Article  CAS  Google Scholar 

  52. Pellois, J.P., Zhou, X.C., Srivannavit, O., Zhou, T.C., Gulari, E., and Gao, X.L. (2002) Individually addressable parallel peptide synthesis on microchips. Nat. Biotechnol., 20, 922–926.

    Article  CAS  Google Scholar 

  53. Frank, R. (2002) The SPOT-synthesis technique: Synthetic peptide arrays on membrane supports–Principles and applications. J. Immunol. Methods, 267, 13–26 and references cited therein.

    Article  CAS  Google Scholar 

  54. Dostmann, W.R.G., Taylor, M.S., Nickl, C.K., Brayden, J.E., Frank, R., and Tegge, W.J. (2000) Highly specific, membrane-permeant peptide blockers of cGMP-dependent protein kinase Iα inhibit NO-induced cerebral dilation. Proc. Natl. Acad. Sci. U.S.A., 97, 14772.

    Article  CAS  Google Scholar 

  55. Toepert, F., Knaute, T., Guffler, S., Pires, J.R., Matzdorf, T., Oschkinat, H., and Schneider-Mergener, J. (2003) Combining SPOT synthesis and native peptide ligation to create large arrays of WW protein domains. J. Angew. Chem. Intl. Ed., 42, 1136–1140.

    Article  CAS  Google Scholar 

  56. Bes, C., Briant-Longuet, L., Cerutti, M., Heitz, F., Troadec, S., Pugniere, M., Roquet, F., Molina, F., Casset, F., Bresson, D., Peraldi-Roux, S., Devauchelle, G., Devaux, C., Granier, C., and Chardes, T. (2003) Mapping the paratope of anti-CD4 recombinant fab 13B8.2 by combining parallel peptide synthesis and site-directed mutagenesis. J. Biol. Chem., 278, 14265–14273.

    Article  CAS  Google Scholar 

  57. Muralidhar, R. and Kodadek, T. (2005) Protein “fingerprinting” in complex mixtures with peptoid microarrays. Proc. Natl. Acad. Sci. U.S.A., 102, 12672–12677.

    Article  CAS  Google Scholar 

  58. Lue, R.Y.P., Chen, G.Y.J., Hu, Y., Zhu, Q., and Yao, S.Q. (2004) Versatile protein biotinylation strategies for potential high-throughput proteomics. J. Am. Chem. Soc., 126, 1055–1062.

    Article  CAS  Google Scholar 

  59. Goddard, J.P. and Reymond, J.L. (2004) Recent advances in enzyme assays. Trends Biotechnol.,, 22, 363–370.

    Article  CAS  Google Scholar 

  60. Chiari, M., Cretich, M., Corti, A., Damin, F., Pirri, G., and Longhi, R. (2005) Peptide micro-arrays for the characterization of antigenic regions of human chromogranin A. Proteomics, 5, 3600–3603.

    Article  CAS  Google Scholar 

  61. Andresen, H., Grötzinger, C., Zarse, K., Kreuzer, O.J., Ehrentreich-Förster, E., and Bier, F.F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics, 6, 1376–1384.

    Article  CAS  Google Scholar 

  62. Songyang, Z., Carraway III, K.L., Eck, M.J., Harrison, S.C., Feldman, R.A., Mohammadi, M., Schlessinger, J., Hubbard, S.R., Smith, D.P., Eng, E., Lorenzo, M.J., Ponder, B.A.J., Mayer, B.J., and Cantley, L.C. (1995) Catalytic specificity of protein-tyrosine kinases is critical for selective signaling. Nature, 373, 536–539.

    Article  CAS  Google Scholar 

  63. Pawson, T. and Scott, J.D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science, 278, 2075–2080.

    Article  CAS  Google Scholar 

  64. Caserine, G. (1992) Peptide display on filamentous phage capsids: A new powerful tool to study protein–ligand interaction. FEBS Lett., 307, 66–70.

    Article  Google Scholar 

  65. Tegge, W., Frank, R., Hofmann, F., and Dostmann, R.G. (1995) Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry, 34, 10569–10577.

    Article  CAS  Google Scholar 

  66. Sills M.A., Weiss, D., Pham, Q., Schweitzer, R., Wu, X., and Wu, J.Z.J. (2002) Comparison of assay technologies for a tyrosine kinase assay generates different results in high throughput screening. J. Biomol. Screening, 7, 191–214.

    Article  CAS  Google Scholar 

  67. Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet., 26,283–289.

    Article  CAS  Google Scholar 

  68. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M., and Reimer, U. (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J. Mol. Biol., 336, 307–311.

    Article  CAS  Google Scholar 

  69. Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, M., Alessi, D.R., and Schneider-Mergener, J. (2004) High-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Ed., 43, 2671–2674.

    Article  CAS  Google Scholar 

  70. Buss, H., Dörrie, A., Schmitz, M.L., Frank, R., Livingstone, M., Resch, K., and Kracht, M. (2004) Phosphorylation of serine 468 by GSK-3 beta negatively regulates basal p65 NF-kappa B activity. J. Biol. Chem., 279, 49571–49574.

    Article  CAS  Google Scholar 

  71. Wang, Z., Lee, J., Cossins, A.R., and Brust, M. (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal. Chem., 77, 5770–5774.

    Article  CAS  Google Scholar 

  72. Deng, S. (2000) Substrate specificity of human collagenase 3 assessed using a phage-dis-played peptide library. J. Biol. Chem., 275, 31422–31427.

    Article  Google Scholar 

  73. Nazif, T. and Bogyo, M. (2001) Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc. Natl. Acad. Sci. U.S.A., 98, 2967–2972.

    Article  CAS  Google Scholar 

  74. Benjamin, E.T., Huang, L.L., Piro, E.T., and Cantley, L.C. (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol., 19, 661–667.

    Article  CAS  Google Scholar 

  75. Benjamin, E.T. and Cantley, L.C. (2004) Using peptide libraries to identify optimal cleavage motifs for proteolytic enzymes. Methods, 32, 398–405.

    Article  CAS  Google Scholar 

  76. Meldal, M., Svendsen, I., Breddam, K., and Auzanneau, F.I. (1994) Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity. Proc. Natl. Acad. Sci. U.S.A., 1994, 91, 3314–3318.

    Article  CAS  Google Scholar 

  77. Leon, S., Quarrell, R., and Lowe, G. (1998) Evaluation of resins for on-bead screening: A study of papain and chymotrypsin specificity using pega-bound combinatorial peptide libraries. Bioorg. Med. Chem. Lett., 8, 2997–3002.

    Article  CAS  Google Scholar 

  78. Chen, G.Y.J., Uttamchandani, M., Zhu, Q., Wang, G. and Yao, S.Q. (2003b) Developing a strategy for activity-based detection of enzymes in a protein microarray. Chem. Bio. Chem., 2003, 4, 336–339.

    CAS  Google Scholar 

  79. Gosalia, D.N. and Diamond, S.L. (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc. Natl. Acad. Sci. U.S.A., 100, 8721–8726.

    Article  CAS  Google Scholar 

  80. Park, C.B. and Clark, D.S. (2002) Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnol. Bioeng., 78, 229–235.

    Article  CAS  Google Scholar 

  81. Gosalia, D.N., Salisbury, C.M., Maly, D.J., Ellman, J.A., and Diamond, S.L. (2005) Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays. Proteomics, 5, 1292–1298.

    Article  CAS  Google Scholar 

  82. Uttamchandani, M., Huang, X., Chen, G.Y.J., and Yao, S.Q. (2005) Nanodroplet profiling of enzymatic activities in a microarray. Bioorg. Med. Chem. Lett., 15, 2447–2451.

    Article  CAS  Google Scholar 

  83. Wang. J., Uttamchandani, M., and Yao, S.Q. (2006) Activity-based high-throughput profiling of metalloprotease inhibitors using small molecule microarrays. Chem. Commun., 717–719.

    Google Scholar 

  84. Zang, X., Yu, Z., and Chu, Y.-H. (1998) Tight-binding streptavidin ligands from a cyclic peptide library. Bioorg. Med. Chem. Lett., 8, 2327–2332.

    Article  CAS  Google Scholar 

  85. Yu, Z., Tu, J., and Chu, Y.-H. (1997) Confirmation of crossreactivity between lyme antibody H9724 and human heat shock protein 60 by a combinatorial approach. Anal. Chem., 69, 4515–4518.

    Article  CAS  Google Scholar 

  86. Chen, B., Bestetti, G., Day, R.M., and Turner, A.P.F. (1998) The synthesis and screening of a combinatorial peptide library for affinity ligands for glycosylated haemoglobin. Biosens. Bioelectron., 13, 779–785.

    Article  CAS  Google Scholar 

  87. Barnes, C.A.S. and Clemmer, D.E. (2001) Assessment of purity and screening of peptide libraries by nested ion mobility- TOFMS: identification of RNase S-protein binders. Anal. Chem., 73, 424–433.

    Article  CAS  Google Scholar 

  88. Verdoliva, A., Marasco, D., De Capua, A., Saporito, A., Bellofiore, P., Manfredi, V., Fattorusso, R., Pedone, C., and Ruvo, M. (2005) A new ligand for immunoglobulin G sub-domains by screening of a synthetic peptide library. Chem. Bio. Chem., 6, 1242–1253.

    CAS  Google Scholar 

  89. Powell, K.D. and Fitzgerald, M.C. (2004) High-throughput screening assay for the tunable selection of protein ligands. J. Comb. Chem., 6, 262–269.

    Article  CAS  Google Scholar 

  90. Duburcq, X., Olivier, C., Malingue, F., Desmet, R., Bouzidi, A., Zhou, F., Auriault, C., Gras-Masse, H., and Melnyk, O. (2004) Peptide-protein microarrays for the simultaneous detection of pathogen infections. Biocon. Chem., 15, 307–316.

    Article  CAS  Google Scholar 

  91. Takahashi, M., Nokihara, K., and Mihara, H. (2000) Construction of a protein-detection system using a loop peptide library with a fluorescence label. Chem. Biol., 10, 53–60.

    Article  CAS  Google Scholar 

  92. Rodriguez, M., Li, S. S.–C., Harper, J.W., and Songyang, Z. (2004) An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J. Biol. Chem., 279, 8802–8807.

    Article  CAS  Google Scholar 

  93. Copeland, G.T. and Miller, S.J. (2001) Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: An approach to kinetic resolution of secondary alcohols of broad structural scope. J. Am. Chem. Soc., 123, 6496–6502.

    Article  CAS  Google Scholar 

  94. Lingard, I., Bhalay, G., and Bradley, M. (2003) Dyad beads and the combinatorial discovery of catalysts. Chem. Commun., 2310–2311.

    Google Scholar 

  95. Xian, M., Fatima, Z., Zhang, W., Fang, J., Li, H., Pei, D., Loo, J., Stevenson, T., and Wang, P.G. (2004) Identification of α-galactosyl epitope mimetics through rapid generation and screening of C-linked glycopeptide library. J. Comb. Chem., 6, 126–134.

    Article  CAS  Google Scholar 

  96. Ying, L., Liu, R., Zhang, J., Lam, K., Lebrilla, C.B., and Gervay- Hague, J. (2005) A topologically segregated one-bead-one-compound combinatorial glycopeptide library for identification of lectin ligands. J. Comb. Chem., 7, 372–384.

    Article  CAS  Google Scholar 

  97. Nielsen, P.E. (2001) Peptide nucleic acid: A versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol., 12, 16–20.

    Article  CAS  Google Scholar 

  98. Weiler, J., Gausepohl, H., Hauser, N., Jensen, O.N., and Hoheisel, J.D. (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res., 25, 2792–2799.

    Article  CAS  Google Scholar 

  99. Brandt, O., Feldner, J., Stephan, A., Schroè, M., Arlinghaus, H.F., Hoheisel, J.D., and Jacob, A. (2003) PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res., 2003, 31, e119.

    Article  CAS  Google Scholar 

  100. Winssinger, N., Harris, J.L., Backes, B.J., and Schultz, P.G. (2001) From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Intl. Ed., 40, 3152–3155.

    Article  CAS  Google Scholar 

  101. Winssinger, N., Ficarro, S., Schultz, P.G., and Harris, J.L. (2002) Profiling protein function with small molecule microarrays. Proc. Natl. Acad. Sci. U.S.A., 99, 11139–11144.

    Article  CAS  Google Scholar 

  102. Winssinger, N., Damoiseaux, R., Tully, D.C., Geierstanger, B.H., Burdick, K., and Harris, J.L. (2004) PNA-encoded protease substrate microarrays. Chem. Biol., 11, 1351–1360.

    Article  CAS  Google Scholar 

  103. Pennington, M.E., Lam, K.S., and Cress, A.E. (1996) The use of a combinatorial library method to isolate human tumor cell adhesion peptides. Mol. Divers., 2, 19–28.

    Article  CAS  Google Scholar 

  104. Otvos, L.J., Pease, A.M., Bokonyi, K., Giles-Davies, W., Rogers, M.E., Hintz, P.A., Hoffmann, R., and Ertl, H.C.J. (2000) In situ stimulation of a T helper cell hybridoma with a cellulose-bound peptide antigen. J. Immunol. Methods, 233, 95–105.

    Article  CAS  Google Scholar 

  105. Stoevesandt, O., Elbs, M., Köhler, K., Lellouch, A.C., Fischer, R., André, T., and Brock, R. (2005) Peptide microarrays for the detection of molecular interactions in cellular signal transduction. Proteomics, 5, 2010–2017.

    Article  CAS  Google Scholar 

  106. Panse, S., Dong, L., Burian, A., Carus, R., Schutkowski, M., Reimer, U., and Schneider Mergener, J. (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol. Divers., 8, 291–299.

    Article  CAS  Google Scholar 

  107. Yeo, S.Y.D., Panicker, R.C., Tan, L.P., and Yao, S.Q. (2004) Strategies for immobilization of biomolecules in a microarray. Comb. Chem. High Throughput Screening, 7, 213–221.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Panicker, R.C., Sun, H., Chen, G.Y.J., Yao, S.Q. (2009). Peptide-Based Microarray. In: Dill, K., Liu, R.H., Grodzinski, P. (eds) Microarrays. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72719-6_7

Download citation

Publish with us

Policies and ethics