Microarrays pp 37-65 | Cite as

Fully Integrated Microfluidic Device for Direct Sample-to-Answer Genetic Analysis

  • Robin H. Liu
  • Piotr Grodzinski
Part of the Integrated Analytical Systems book series (ANASYS)


Integration of microfluidics technology with DNA microarrays enables building complete sample-to-answer systems that are useful in many applications such as clinic diagnostics. In this chapter, a fully integrated microfluidic device [1] that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and a DNA microarray sensor to perform DNA analysis of complex biological sample solutions is present. This device can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization, and electrochemical detection. A few novel microfluidic techniques were developed and employed. A micromix-ing technique based on a cavitation microstreaming principle was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads. This technique was also employed to accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ~mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.


Microfluidic Device Polymerase Chain Reaction Thermal Cycling Polymerase Chain Reaction Device Plastic Chip Polymerase Chain Reaction Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Drs. Jiangning Yang and Ralf Lenigk at Motorola Labs and colleagues at Motorola Life Science for all the technical support. This work has been sponsored in part by NIST ATP contract #1999011104A and DARPA contract #MDA972-01-3-0001.


  1. 1.
    Liu, R. H., J. Yang, et al. (2004). Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem.76: 1824–1832.CrossRefGoogle Scholar
  2. 2.
    Burns, M.A., B.N. Johnson, et al. (1998). An integrated nanoliter DNA analysis device. Science282(5388): 484–487.CrossRefGoogle Scholar
  3. 3.
    Kricka, L. (1998). Miniaturization of analytical systems. Clin. Chem.44(9): 2008–2014.Google Scholar
  4. 4.
    Wilding, P., L.J. Kricka, et al. (1998). Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal. Biochem.257(2): 95–100.CrossRefGoogle Scholar
  5. 5.
    Shi, Y.N., P.C. Simpson, et al. (1999). Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Anal. Chem.71(23): 5354–5361.CrossRefGoogle Scholar
  6. 6.
    Emrich, C.A., H.J. Tian, et al. (2002). Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal. Chem.74(19): 5076–5083.CrossRefGoogle Scholar
  7. 7.
    Liu, R.H., K. Dill, et al. (2006). Integrated microfluidic biochips for DNA microarray analysis. Expert Rev. Molec. Diagnostics6: 253–261.CrossRefGoogle Scholar
  8. 8.
    Kovacs, G.T.A. (1998). Micromachined Transducers Sourcebook. Boston, WCB McGraw-Hill.Google Scholar
  9. 9.
    Manz, A., D.J. Harrison, et al. (1992). Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatogr.593: 253–258.CrossRefGoogle Scholar
  10. 10.
    Harrison, D.J., K. Fluri, et al. (1993). Micromachining a miniaturized capillary electrophore-sis-based chemical analysis system on a chip. Science261: 895–897.CrossRefGoogle Scholar
  11. 11.
    Woolley, A.T. and R.A. Mathies (1994). Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis. Proc. Natl. Acad. Sci. U.S.A.91: 11348.CrossRefGoogle Scholar
  12. 12.
    Woolley, A.T., D. Hadley, et al. (1996). Functional integration of PCR amplification and capillary electrophresis in a microfabricated DNA analysis device. Anal. Chem.68(23, Dec. 1996): 4081–4086.CrossRefGoogle Scholar
  13. 13.
    Waters, L.C., S.C. Jacobson, et al. (1998). Microchip device for cell lysis, multiplex PCR amplification and electrophoretic sizing. Anal. Chem.70: 158–162.CrossRefGoogle Scholar
  14. 14.
    Edman, C., D. Raymond, et al. (1998). Electric field directed nucleic acid hybridization on microchips. Nucl. Acids Res.25: 4907–4914.CrossRefGoogle Scholar
  15. 15.
    Radtkey, R., L. Feng, et al. (2000). Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucleic Acids Res.28: E17.CrossRefGoogle Scholar
  16. 16.
    Erickson, D., X. Liu, et al. (2004). Electrokinetically controlled DNA hybridization microflu-idic chip enabling rapid target analysis. Anal. Chem.76(24): 7269–7277.CrossRefGoogle Scholar
  17. 17.
    Fan, Z.H., S. Mangru, et al. (1999). Dynamic DNA hybridization on a chip using paramagnetic beads. Anal. Chem.71: 4851–4859.CrossRefGoogle Scholar
  18. 18.
    Chee, M., R. Yang, et al. (1996). Accessing genetic information with high-density DNA arrays. Science274: 610–4.CrossRefGoogle Scholar
  19. 19.
    Cheek, B.J., A.B. Steel, et al. (2001). Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem.73: 5777–5783.CrossRefGoogle Scholar
  20. 20.
    Lenigk, R., R.H. Liu, et al. (2002). Plastic biochannel hybridization devices: A new concept for microfluidic DNA arrays. Anal. Biochem.311(1): 40–49.CrossRefGoogle Scholar
  21. 21.
    Wei, C.W., J.Y. Cheng, et al. (2005). Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s. Nucleic Acids Res.33(8): e78.CrossRefGoogle Scholar
  22. 22.
    McQuain, M.K., K. Seale, et al. (2004). Chaotic mixer improves microarray hybridization. Anal. Biochem.325(2): 215–26.CrossRefGoogle Scholar
  23. 23.
    Liu, J., B.A. Williams, et al. (2006). Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew. Chem. Int. Ed.45: 3618–3623.CrossRefGoogle Scholar
  24. 24.
    Liu, R.H., R. Lenigk, et al. (2003). Hybridization enhancement using cavitation microstream-ing. Anal. Chem.75: 1911–1917.CrossRefGoogle Scholar
  25. 25.
    Wilding, P., M.A. Shoffner, et al. (1994). PCR in a silicon microstructure. Clin. Chem.40(9): 1815–8.Google Scholar
  26. 26.
    Anderson, R.C., X. Su, et al. (2000). A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res.28(12): E60.CrossRefGoogle Scholar
  27. 27.
    Liu, Y.J., C.B. Rauch, et al. (2002). DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal. Chem.74(13): 3063–3070.CrossRefGoogle Scholar
  28. 28.
    Yuen, P., L. Kricka, et al. (2001). Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res.11: 405–412.CrossRefGoogle Scholar
  29. 29.
    Farkas, D.H. (2001). Bioelectronic DNA chips for the clinical laboratory. Clinical Chem.47(10): 1871–1872.Google Scholar
  30. 30.
    Umek, R.M., S.W. Lin, et al. (2001). Electronic detection of nucleic acids - A versatile platform for molecular diagnostics. J. Molec. Diagnostics3(2): 74–84.Google Scholar
  31. 31.
    Liu, R.H., M. Stremler, et al. (2000). A passive micromixer: 3-D C-shape serpentine microchannel. J. Microelectromech. Syst.9(2): 190–197.CrossRefGoogle Scholar
  32. 32.
    Branebjerg, J., P. Gravesen, et al. (1996). Fast mixing by lamination. MEMS '96, San Diego, CA.Google Scholar
  33. 33.
    Oddy, M.H., J.G. Santiago, et al. (2001). Electrokinetic instability micromixing. Anal. Chem.73 (24): 5822–5832.CrossRefGoogle Scholar
  34. 34.
    Stroock, A.D., S.K.W. Dertinger, et al. (2002). Chaotic mixer for microchannels. Science295(5555): 647–651.CrossRefGoogle Scholar
  35. 35.
    Moroney, R.M., R.M. White, et al. (1995). Ultrasonically induced microtransport. MEMS '95, The Netherlands.Google Scholar
  36. 36.
    Zhu, X. and E.S. Kim (1998). Microfluidic motion generation with acoustic waves. Sensors and Actuators: A. Physical66 (1–3): 355–360.CrossRefGoogle Scholar
  37. 37.
    Liu, R.H., J. Yang, et al. (2002). Bubble-induced acoustic micromixing. Lab On A Chip2(3): 151–157.CrossRefGoogle Scholar
  38. 38.
    Nyborg, W.L. (1958). Acoustic streaming near a boundary. J. Acoust. Soc. Am.30: 329–339.CrossRefGoogle Scholar
  39. 39.
    Henning, A.K., J. Fitch, et al. (1997). A thermopneumatically actuated microvalve for liquid expansion and proportional control. Technical Digest of TRANSDUCERS '97: the 1997 International Conference on Solid-State Sensors and Actuators, Chicago.Google Scholar
  40. 40.
    Selvaganapathy, P., E.T. Carlen, et al. (2003). Electrothermally actuated inline microfluidic valve. Sensors Actuators A104: 275–282.CrossRefGoogle Scholar
  41. 41.
    Jerman, H. (1994). Electrically-activated, normally-closed diaphragm valves. J. Micromech. Microeng.4: 210–216.CrossRefGoogle Scholar
  42. 42.
    Barth, P.W., C.C. Beatty, et al. (1994). A robust normally closed silicon microvalve. IEEE Solid-State Sensors and Actuator Workshop, Hilton Head, SC.Google Scholar
  43. 43.
    Ray, C.A., C.L. Sloan, et al. (1992). A silicon-based shape memory alloy microvalve. Proc. Materials Research society Symposium276: 161–166.Google Scholar
  44. 44.
    Huff, M.A. and M.A. Schmidt (1992). Fabrication, packaging, and testing of a wafer-bonded microvalve. IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, IEEE Electron Devices Society.Google Scholar
  45. 45.
    Shoji, S., B. V. d. Schoot, et al. (1991). Smallest dead volume microvalves for integrated chemical analyzing systems. Tech. Digest, Transducers' 91: the 1991 International Conference on Solid-State Sensors and Actuators, San Francisco.Google Scholar
  46. 46.
    Beebe, D.J., J.S. Moore, et al. (2000). Functional structures for autonomous flow control inside microfluidic channels. Nature404: 588–590.CrossRefGoogle Scholar
  47. 47.
    Liu, R.H., Q. Yu, et al. (2002). Fabrication and characterization of hydrogel-based microv-alves. J. Microelectromech. Syst.11: 45–53.CrossRefGoogle Scholar
  48. 48.
    Unger, M.A., H. Chou, et al. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science288: 113–116.CrossRefGoogle Scholar
  49. 49.
    Liu, R.H., J. Bonanno, et al. (2002). Thermally actuated paraffin microvalves. Proceedings of Micro Total Analysis Systems 2002, Kluwer Academic, Dordrecht, The Netherlands: 163–165.Google Scholar
  50. 50.
    Yu, C., S. Mutlu, et al. (2003). Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal. Chem.75: 1958–1961.CrossRefGoogle Scholar
  51. 51.
    Zengerle, R., S. Skluge, et al. (1995). A bidirectional silicon micropump. Sensors Actuators A-Physical50: 81–86.CrossRefGoogle Scholar
  52. 52.
    Su, Y.C., L. W. Lin, et al. (2002). A water-powered osmotic microactuator. J. Microelectromech. Syst.11(6): 736–742.CrossRefGoogle Scholar
  53. 53.
    Bohm, S., W. Olthuis, et al. (1999). An integrated micromachined electrochemical pump and dosing system. J. Biomed. Microdevices1(2): 121–130.CrossRefGoogle Scholar
  54. 54.
    Fodor, S.P., J.L. Read, et al. (1991). Light-directed, spatially addressable parallel chemical synthesis. Science251(4995): 767–773.CrossRefGoogle Scholar
  55. 55.
    Fortina, P., K. Delgrosso, et al. (2000). Simple two-color array-based approach for mutation detection. Euro. J.Hum. Genet.8: 884–894.CrossRefGoogle Scholar
  56. 56.
    Cheng, J., P. Fortina, et al. (1996). Microchip-based devices for molecular diagnosis of genetic diseases. Mol. Diagn.1(3): 183–200.CrossRefGoogle Scholar
  57. 57.
    Cheng, J., M.A. Shoffner, et al. (1996). Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res.24(2): 380–385.CrossRefGoogle Scholar
  58. 58.
    Gascoyne, P. R. C. and J. Vykoukal (2002). Particle separation by dielectrophoresis. Electrophoresis23: 1973.CrossRefGoogle Scholar
  59. 59.
    Cheng, J., E.L. Sheldon, et al. (1998). Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal. Chem.70(11): 2321–2326.CrossRefGoogle Scholar
  60. 60.
    Ward, M.D., J. Quan, et al. (2002a). High gradient magnetic separation microchannels for integrated microfluidic devices. Euro. Cell Mater. J.3: 123–125.Google Scholar
  61. 61.
    Ward, M.D., J. Quan, et al. (2002b). Metal-polymer hybrid microchannels for microfluidic high gradient separations. Euro. Cell Mater. J.3: 123.Google Scholar
  62. 62.
    Saito, M., F. Kitamura, et al. (2002). Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity. J. Appl. Phys.92(12): 7581–7586.CrossRefGoogle Scholar
  63. 63.
    Cheng, J., L.J. Kricka, et al. (1998). Sample preparation in microstructured devices. Microsyst. Techn. Chem. Life Sci.194: 215–231.CrossRefGoogle Scholar
  64. 64.
    Taylor, M.T., P. Belgrader, et al. (2001). Fully automated sample preparation for pathogen detection performed in a microfluidic cassette. Micro Total Anal. Syst.670–672.Google Scholar
  65. 65.
    Kopp, M., A. De Mello, et al. (1998). Chemical amplification: Continuous-flow PCR on a chip. Science280: 10461048.CrossRefGoogle Scholar
  66. 66.
    Belgrader, P., W. Benett, et al. (1999). PCR detection of bacteria in seven minutes. Science284(5413): 449–450.CrossRefGoogle Scholar
  67. 67.
    Boone, T., H. Hooper, et al. (1998). Integrated chemical analysis on plastic microfluidic devices. Solid-State Sensor and Actuator, Hilton Head Island, SC.Google Scholar
  68. 68.
    Yu, H., P. Sethu, et al. (2000). A miniaturized and integrated plastic thermal chemical reactor for genetic analysis. uTAS 2000, The Netherlands, Kluwer Academic.Google Scholar
  69. 69.
    Kricka, L., P. Fortina, et al. (2002). Fabrication of plastic microchips by hot embossing. Lab on a Chip2: 1–4.CrossRefGoogle Scholar
  70. 70.
    Lagally, E.T., P.C. Simpson, et al. (2000). Monolithic integrated microfluidic DNA amplification and capillary electrophoresisanalysis system. Sensor Actuators B63: 138–146.CrossRefGoogle Scholar
  71. 71.
    Giordano, B., J. Ferrance, et al. (2001). Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. Anal. Biochem.291: 124–132.CrossRefGoogle Scholar
  72. 72.
    Lagally, E.T., I. Medintz, et al. (2001). Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal. Chem.73: 565–570.CrossRefGoogle Scholar
  73. 73.
    Khandurina, J., T.E. Meknight, et al. (2000). Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem.72: 2995–3000.CrossRefGoogle Scholar
  74. 74.
    Alonso-Amigo, G. (2000). Polymer microfabrication for microarrays, microreactors and microfluidics. J. Assoc. Lab Aut.5: 96–101.CrossRefGoogle Scholar
  75. 75.
    Grodzinski, P., R.H. Liu, et al. (2001). Development of plastic microfluidic devices for sample preparation. Biomed. Microdevices3(4): 275.CrossRefGoogle Scholar
  76. 76.
    Yang, J., Y. Liu, et al. (2002). High sensitivity PCR assay in plastic micro reactors. Lab on a Chip2: 179–187.CrossRefGoogle Scholar
  77. 77.
    Cheng, J., L.C. Waters, et al. (1998). Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices. Anal. Biochem.257(2): 101–106.CrossRefGoogle Scholar
  78. 78.
    Northrup, M. A., et al. (1998). A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal. Chem.70: 918–922.CrossRefGoogle Scholar
  79. 79.
    Sosnowski, R., E. Tu, et al. (1997). Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci.94: 1119–1123.CrossRefGoogle Scholar
  80. 80.
    Moroney, R.M., R.M. White, et al. (1991). Microtransport induced by ultrasonic lamb waves. Appl. Phys. Lett.59: 774–776.CrossRefGoogle Scholar
  81. 81.
    Panaccio, M., M. Georgesz, et al. (1993). Folt PCR – A simple PCR protocol for amplifying DNA directly from whole-blood. Biotechniques14(2): 238 ff.Google Scholar
  82. 82.
    Burckhardt, J. (1994). Amplification of DNA from whole-blood. PCR-Methods and Applications3(4): 239–243.Google Scholar
  83. 83.
    Ibrahim, M.S., R.S. Lofts, et al. (1998). Real-time microchip PCR for detecting single-base differences in viral and human DNA. Anal. Chem.70(9): 2013–2017.CrossRefGoogle Scholar
  84. 84.
    Klein, D. (2002). Quantification using real-time PCR technology: applications and limitations. Trends Molec. Med.8(6): 257–260.CrossRefGoogle Scholar
  85. 85.
    Umek, R.M., S.S. Lin, et al. (2000). Bioelectronic detection of point mutations using discrimination of the H63D polymorphism of the Hfe gene as a model. Molec. Diagnosis5(4): 321–328.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robin H. Liu
    • 1
    • 2
  • Piotr Grodzinski
    • 3
    • 4
  1. 1.Osmetech Molecular, DiagnosticsPasadena
  2. 2.CombiMatrix Corporation, IncMukilteoUSA
  3. 3.Nanotechnology in Cancer, National Cancer InstituteBethesda
  4. 4.National Institutes of Health, National Cancer InstituteBethesdaUSA

Personalised recommendations