Microarrays pp 339-353 | Cite as

Electrochemical Nanoparticle-Based Sensors

  • Joseph Wang
Part of the Integrated Analytical Systems book series (ANASYS)


Electrochemical devices are extremely useful for delivering analytical information in a fast, simple, and low-cost fashion, and are thus uniquely qualified for meeting the demands of point-of-care diagnostics. In particular, nanoparticles offer elegant ways for interfacing biomolecular recognition events with electronic signal transduction, for dramatically amplifying the resulting electrical response, and for designing novel coding strategies. Nanoparticles, such as colloidal gold or inorganic nanocrystals, offer considerable promise as quantitation tags for biological assays owing to their unique amplification and coding capabilities.


Gold Nanoparticles Magnetic Sphere Graphite Pencil Electrode Electrochemical Transduction Inorganic Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the National Science Foundation (Grant Number CHE 0506529) and NIH (R01A 1056047-01 and R01 EP 0002189) is gratefully acknowledged.


  1. 1.
    Niemeyer, C.M. (2001). Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew. Chem. Int. Ed. 40, 4128.CrossRefGoogle Scholar
  2. 2.
    Alivisatos, P. (2004). The use of nanocrystals in biological detection, Nature Biotechnology, 22, 47.CrossRefGoogle Scholar
  3. 3.
    Niemeyer, C.M. and Mirkin, C.A. (2004). Nanobiotechnology, Wiley-VCH, Weinheim.Google Scholar
  4. 4.
    Katz, E. and Willner, I. (2004). Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications, Angew Chemie Int. Ed. 43, 6042.CrossRefGoogle Scholar
  5. 5.
    Rosi, N.L., Mirkin, C.A. (2005). Nanostructures in biodiagnostics, Chem. Rev., 105, 1547.CrossRefGoogle Scholar
  6. 6.
    Wang, J. (2005a). Nanomaterial-based amplified transduction of biomoleular interactions. Small, 1, 1036.CrossRefGoogle Scholar
  7. 7.
    Han, M., et al. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol., 19, 631.CrossRefGoogle Scholar
  8. 8.
    Wang J. (2003a). Nanoparticle-based electrical DNA assays, Anal. Chim. Acta, 500, 247.CrossRefGoogle Scholar
  9. 9.
    Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., and Letsinger, R.L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc. 120, 1959.CrossRefGoogle Scholar
  10. 10.
    Willner, I., Patolsky, F., Weizmann, Y., and Willner, B. (2002). Amplified detection of single-base mismatches in DNA using micro gravimetric quartz-crystal-microbalance transduction, Talanta, 56, 847.CrossRefGoogle Scholar
  11. 11.
    Wang, J. (2006). Analytical Electrochemistry (3rd Edition), Wiley, New York.CrossRefGoogle Scholar
  12. 12.
    Mikkelsen, S.R. (1996). Electrochemical biosensors for DNA sequence detection, Electroanalysis, 8, 15.CrossRefGoogle Scholar
  13. 13.
    Palecek, E. and Fojta, M. (2001). Detecting DNA hybridization and damage, Anal. Chem. 73, 75A.Google Scholar
  14. 14.
    Skladal P. (1997). Advances in electrochemical immunosensors, Electroanalysis, 9, 737.CrossRefGoogle Scholar
  15. 15.
    Taton, T.A., Mirkin, C.A., and Letsinger, R.L. (2000). Scanometric DNA array detection with nanoparticle probes, Science 289, 1757.CrossRefGoogle Scholar
  16. 16.
    Wang, J. (1985). Stripping Analysis, VCH, New York.Google Scholar
  17. 17.
    Dequaire, M., Degrand, C., and Limoges, B. (2000). An electrochemical metalloimmunoassay based on a colloidal gold label, Anal. Chem. 72, 5521.CrossRefGoogle Scholar
  18. 18.
    Authier, L., Grossiord, C., Berssier, P., and Limoges, B. (2001). Gold nanoparticle-based quantitative electrochemical detection of amplified human Cytomegalovirus DNA using disposable microband electrodes, Anal. Chem. 73, 4450.CrossRefGoogle Scholar
  19. 19.
    Hansen, J., Wang, J., Kawde, A., Xiang, Y., Gothelf, K.V., and Collins, G. (2006). Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc., 128, 2228.CrossRefGoogle Scholar
  20. 20.
    Wang, J., Xu, D., Kawde, A., and Polsky, R. (2001a). Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Anal. Chem. 73, 5576.CrossRefGoogle Scholar
  21. 21.
    Cai, H., Xu, Y., Zhu, N., He, P., and Fang, Y. (2002). An electrochemical DNA hybridization detection assay based on a silver nanoparticle label, Analyst, 127, 803.CrossRefGoogle Scholar
  22. 22.
    Wang, J., Polsky, R., and Danke, X. (2001b). Silver-enhanced colloidal gold electrical detection of DNA hybridization, Langmuir, 17, 5739.CrossRefGoogle Scholar
  23. 23.
    Lee, T.M.H., Li, L.L., and Hsing, I.M. (2003). Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir, 19, 4338.CrossRefGoogle Scholar
  24. 24.
    Ozsoz, M., Erdem, A., Kerman, K., Okzan, D., Tugrul, B., Topcuoglo, N., Ekren, H., and Taylan, M. (2003). Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V eiden mutation using disposable pencil graphite electrodes, Anal. Chem. 75, 2181.CrossRefGoogle Scholar
  25. 25.
    Kawde, A. and Wang, J. (2004). Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticles tags, Electroanalysis, 16, 101.CrossRefGoogle Scholar
  26. 26.
    Wang, J., Li, J., Baca, A., Hu, J., Zhou, F., Yan, W., and Pang, D.W. (2003b). Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nano-particle/streptavidin conjugates, Anal. Chem. 75, 3941.CrossRefGoogle Scholar
  27. 27.
    Wang, J., Rincon, O., Polsky, R., and Dominguez, E. (2003c). Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster, Electrochem. Commun., 5, 83.CrossRefGoogle Scholar
  28. 28.
    Wang, J., Liu, G., and Merkoçi, A. (2003d). Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 125, 3214.CrossRefGoogle Scholar
  29. 29.
    Liu, G., Wang, J., Kim, J., Jan, M., and Collins, G. (2004). Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem., 76, 7126.CrossRefGoogle Scholar
  30. 30.
    Escosura-Muniz, A. de la Ambrosie, A., and Merckici, A. (2008). Electrochemical analysis with nanoparticle-based biosystems, Trends Anal. Chem. 27, 568.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Liu, G. and Polsky, R. (2002a). Electrochemical stripping detection of DNA hybridization based on CdS nanoparticle tags, Electrochemistry Commun., 4, 819.Google Scholar
  32. 32.
    Wang, J., Liu, G., Jan, R., and Zhu, Q. (2003e). Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags, Electrochemistry Commun., 5, 1000.CrossRefGoogle Scholar
  33. 33.
    Wang, J., Liu, G., and Rivas, G. (2003f). Encoded beads for electrochemical identification, Anal. Chem., 75, 4661.Google Scholar
  34. 34.
    Wang, J., Liu, G., and Zhou, J. (2003g). Indium microrod tags for electrical detection of DNA hybridization, Anal. Chem., 75, 6218.CrossRefGoogle Scholar
  35. 35.
    Dai, Z., Kawde, A., Xiang, Y., La Belle, J., Gerlach, J., Bhavanandan, V.P., Joshi, J., and Wang, J. (2006). Nanoparticle-based bioelectronic sensing of glycan-lectin interactions, J. Am. Chem. Soc., 128, 10018.CrossRefGoogle Scholar
  36. 36.
    Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M., and Tamiya, E. (2004). Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles, Anal. Chem. 76, 1877.CrossRefGoogle Scholar
  37. 37.
    Wang, J., Lee, T., and Liu, G. (2005b), Nanocrystal-based bioelectronics coding of SNP, J. Am. Chem. Soc. 127, 38.CrossRefGoogle Scholar
  38. 38.
    Wang, J., Xu, D., and Polsky, R.(2002b). Magnetically-induced solid-state electrochemical detection of DNA hybridization, J. Am. Chem. Soc., 124, 4208.CrossRefGoogle Scholar
  39. 39.
    Palecek, E., Fojta, M., and Jelen, F. (2002). New approaches in the development of DNA sensors: Hybridization and electrochemical detection of DNA and RNA at two different surfaces, Bioelectrochemistry 56, 85.CrossRefGoogle Scholar
  40. 40.
    Wang, J. and Kawde, A. (2002c). Magnetic-field stimulated DNA oxidation, Electrochemistry Commun., 4, 349.CrossRefGoogle Scholar
  41. 41.
    Patolsky, F., Weizmann, Y., Katz, E., and Willner, I. (2003). Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles: Angew Chemie Int. Ed. 42, 2372.CrossRefGoogle Scholar
  42. 42.
    Wang, J., Liu, G.D., and Merkoci, A. (2003i). Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer, Anal. Chim. Acta, 482, 149.CrossRefGoogle Scholar
  43. 43.
    Cai, H., Zhu, N., Jiang, Y., He, P. and Fang, Y.Z. (2003), Cu-Au alloy nanoparticle as oligo nucleotides lables for electrochemical stripping detection of DNA hybridization. Bioelectronis, 18, 1311.CrossRefGoogle Scholar
  44. 44.
    Wang, J., Polsky, P., Merkoci, A., and Turner, K. (2003h). Electroactive beads for ultrasensitive DNA detection, Langmuir, 19, 989.CrossRefGoogle Scholar
  45. 45.
    Trau, D., Yang, W., Seydack, M., Carusu, F., and Renneberg, R. (2002). Nanoencapsulated microcrystalline particles for superamplified biochemical assays, Anal. Chem. 74, 5480.CrossRefGoogle Scholar
  46. 46.
    Park, S., Taton, T.A., and Mirkin, C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes, Science, 295, 1503.CrossRefGoogle Scholar
  47. 47.
    Velev, O.D. and Kaler, E.W. (1999). In situ assembly of colloidal particles into miniaturized biosensors, Langmuir, 15, 3693.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joseph Wang
    • 1
  1. 1.Department of Nano EngineeringUCSDLa JollaUSA

Personalised recommendations