Microarrays pp 315-338 | Cite as

Bar Coding Platforms for Nucleic Acid and Protein Detection

  • Uwe R. Müller
Part of the Integrated Analytical Systems book series (ANASYS)


A variety of novel bar coding systems has been developed as multiplex testing platforms for applications in biological, chemical, and biomedical diagnostics. Instead of identifying a target through capture at a specific locus on an array, target analytes are captured by a bar coded tag, which then uniquely identifies the target, akin to putting a UPC bar code on a product. This requires an appropriate surface functionalization to ensure that the correct target is captured with high efficiency. Moreover the tag, or bar code, has to be readable with minimal error and at high speed, typically by flow analysis. For quantitative assays the target may be labeled separately, or the tag may also serve as the label. A great variety of materials and physicochemical principles has been exploited to generate this plethora of novel bar coding platforms. Their advantages compared to microarray-based assay platforms include in-solution binding kinetics, flexibility in assay design, compatibility with microplate-based assay automation, high sample throughput, and with some assay formats, increased sensitivity.


Polystyrene Bead Assay Platform Nanoparticle Probe Large Extinction Coefficient Cytometric Bead Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Southern, E.M., 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517.Google Scholar
  2. 2.
    Manns, R.L., 2003 Necessity is the mother of invention – The history of microplates. PharmaTech Series Business Briefing: Future Drug Discovery 2003, Business Briefing Ltd, pp. 108–112.Google Scholar
  3. 3.
    Mendoza, L.G., McQuary, P., Mongan, A., Gangadharan, R., Brignac, S., and Eggers, M., 1999 High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27: 778–780, 782–786, 788.Google Scholar
  4. 4.
    Taltech website, Introduction to Bar Coding, http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcsymbol.htm
  5. 5.
    Worth Data website, Bar Code Basics, http://www.barcodehq.com/primer.html
  6. 6.
    Woodland, N.J. and Silver, B. 1952. U.S. Patent No. 2,612,994.Google Scholar
  7. 7.
    Ebach, M.C. and Holdrege, C., 2005 DNA barcoding is no substitute for taxonomy. Nature 434: 697.Google Scholar
  8. 8.
    Moritz, C. and Cicero, C., 2004 DNA barcoding: Promise and pitfalls. PLoS Biol 2: e354.Google Scholar
  9. 9.
    Schindel, D.E. and Miller, S.E., 2005 DNA barcoding a useful tool for taxonomists. Nature 435: 417.Google Scholar
  10. 10.
    Campbell, J., Francesconi, S., Boyd, J., Worth, L., and Moshier, T., 1999 Aug Environmental air sampling to detect biological warfare agents. Mil Med 164: 541–542.Google Scholar
  11. 11.
    Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D., 2006 DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103: 968–971.Google Scholar
  12. 12.
    Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A., and Janzen, D.H., 2005 Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102: 8369–8374.Google Scholar
  13. 13.
    Lorenz, J.G., Jackson, W.E., Beck, J.C., and Hanner, R., 2005 The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philos Trans R Soc Lond B Biol Sci 360: 1869–1877.Google Scholar
  14. 14.
    Summerbell, R.C., Levesque, C.A., Seifert, K.A., Bovers, M., Fell, J.W., Diaz, M.R., Boekhout, T., de Hoog, G.S., Stalpers, J., and Crous, P.W., 2005 Microcoding: The second step in DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360: 1897–1903.Google Scholar
  15. 15.
    Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., and Abebe, E., 2005 Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci 360: 1935–1943.Google Scholar
  16. 16.
    DeSalle, R., Egan, M.G., and Siddall, M., 2005 The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360: 1905–1916.Google Scholar
  17. 17.
    Savolainen, V., Cowan, R.S., Vogler, A.P., Roderick, G.K., and Lane, R., 2005 Towards writing the encyclopedia of life: An introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360: 1805–1811.Google Scholar
  18. 18.
    Leclair, B. and Scholl, T., 2005 Application of automation and information systems to forensic genetic specimen processing. Expert Rev Mol Diagn 5: 241–250.Google Scholar
  19. 19.
    Saji, F., 1993 Application of DNA fingerprinting to obstetrics and gynecology. Nippon Sanka Fujinka Gakkai Zasshi 45: 815–821.Google Scholar
  20. 20.
    Sullivan, K.M., Hopgood, R., and Gill, P., 1992 Identification of human remains by amplification and automated sequencing of mitochondrial DNA. Int J Legal Med 105: 83–86.Google Scholar
  21. 21.
    Caspersson, T., Farber, S., Foley, G.E., Kudynowski, J., Modest, E.J., Simonsson, E., Wagh, U., and Zech, L., 1968 Chemical differentiation along metaphase chromosomes. Exp Cell Res 49: 219–222.Google Scholar
  22. 22.
    Chaudhuri, J.P., Vogel, W., Voiculescu, I., and Wolf, U., 1971 A simplified method of demonstrating Giemsa-band pattern in human chromosomes. Humangenetik 14: 83–84.Google Scholar
  23. 23.
    Florijn, R.J., Bonden, L.A., Vrolijk, H., Wiegant, J., Vaandrager, J.W., Baas, F., den Dunnen, J.T., Tanke, H.J., van Ommen, G.J., and Raap, A.K., 1995 High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum Mol Genet 4: 831–836.Google Scholar
  24. 24.
    Lengauer, C., Speicher, M.R., Popp, S., Jauch, A., Taniwaki, M., Nagaraja, R., Riethman, H.C., Donis-Keller, H., D'Urso, M., Schlessinger, D., and et al.., 1993 Chromosomal bar codes produced by multicolor fluorescence in situ hybridization with multiple YAC clones and whole chromosome painting probes. Hum Mol Genet 2: 505–512.Google Scholar
  25. 25.
    Muller, S., Eder, V., and Wienberg, J., 2004 A nonredundant multicolor bar code as a screening tool for rearrangements in neoplasia. Genes Chromosomes Cancer 39: 59–70.Google Scholar
  26. 26.
    Muller, S. and Wienberg, J., 2001 “Bar-coding” primate chromosomes: Molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109: 85–94.Google Scholar
  27. 27.
    Cox, J.P., 2001 Bar coding objects with DNA. Analyst 126: 545–547.Google Scholar
  28. 28.
    Qiu, F., Guo, L., Wen, T.J., Liu, F., Ashlock, D.A., and Schnable, P. S., 2003 DNA sequence-based “bar codes” for tracking the origins of expressed sequence tags from a maize cDNA library constructed using multiple mRNA sources. Plant Physiol 133: 475–481.Google Scholar
  29. 29.
    Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W., 1995 Serial analysis of gene expression. Science 270: 484–487.Google Scholar
  30. 30.
    Cai, H., White, P.S., Torney, D., Deshpande, A., Wang, Z., Keller, R.A., Marrone, B., and Nolan, J.P., 2000 Flow cytometry-based minisequencing: A new platform for high-throughput single-nucleotide polymorphism scoring. Genomics 66: 135–143.Google Scholar
  31. 31.
    Fan, J.B., Chen, X., Halushka, M.K., Berno, A., Huang, X., Ryder, T., Lipshutz, R.J., Lockhart, D.J., and Chakravarti, A., 2000 Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 10: 853–860.Google Scholar
  32. 32.
    Haff, L.A. and Smirnov, I.P., 1997 Multiplex genotyping of PCR products with MassTag-labeled primers. Nucleic Acids Res 25: 3749–3750.Google Scholar
  33. 33.
    Yan, H., LaBean, T.H., Feng, L., and Reif, J.H., 2003 Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc Natl Acad Sci U S A 100: 8103–8108.Google Scholar
  34. 34.
    Li, Y., Cu, Y.T.H., and Luo, D., 2005. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol 23: 885–889.Google Scholar
  35. 35.
    Müller, U.R. 1998. U.S. Patent No. 5,824,478.Google Scholar
  36. 36.
    Cruickshank, K.A., Olvera, J., and Müller, U.R., 1998 Simultaneous multiple analyte detection using fluorescent peptides and capillary isoelectric focusing. J Chromatogr A 817: 41–47.Google Scholar
  37. 37.
    Hofmann, O., Che, D., Cruickshank, K.A., and Müller, U.R., 1999 Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal Chem 71: 678–686.Google Scholar
  38. 38.
    Horan, P.K. and Wheeless, L.L., Jr, 1977 Quantitative single cell analysis and sorting. Science 198: 149–157.Google Scholar
  39. 39.
    McHugh, T.M., Miner, R.C., Logan, L.H., and Stites, D.P., 1988 Simultaneous detection of antibodies to cytomegalovirus and herpes simplex virus by using flow cytometry and a microsphere-based fluorescence immunoassay. J Clin Microbiol 26: 1957–1961.Google Scholar
  40. 40.
    Baetens, D.G. and Van Renterghem, L.M., 2001 Coupled particle light scattering: a new technique for serodiagnosis of Epstein-Barr virus infection. J Med Virol 64: 519–525.Google Scholar
  41. 41.
    Benecky, M.J., Post, D.R., Schmitt, S.M., and Kochar, M.S., 1997 Detection of hepatitis B surface antigen in whole blood by coupled particle light scattering (Copalis). Clin Chem 43: 1764–1770.Google Scholar
  42. 42.
    Benecky, M.J., McKinney, K.L., Peterson, K.M., and Kamerud, J.Q., 1998 Simultaneous detection of multiple analytes using Copalis technology: A reduction to practice. Clin Chem 44: 2052–2054.Google Scholar
  43. 43.
    Pris, A.D. and Porter, M.D., 2004 Nanoparticle coding: Size-based assays using atomic force microscopy. Langmuir 20: 6969–6973.Google Scholar
  44. 44.
    Link, S. and El-Sayed, M.A., 2003 Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54: 331–366.Google Scholar
  45. 45.
    Yguerabide, J. and Yguerabide, E.E., 1998a Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental Characterization. Anal Biochem 262: 157–176.Google Scholar
  46. 46.
    Yguerabide, J. and Yguerabide, E.E., 1998b Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal Biochem 262: 137–156.Google Scholar
  47. 47.
    Yguerabide, J. and Yguerabide, E.E., 2001 Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J Cell Biochem Suppl 37: 71–81.Google Scholar
  48. 48.
    Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., and Mirkin, C.A., 1997 Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277: 1078–1081.Google Scholar
  49. 49.
    Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P., and Müller, U.R., 2004a Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nano-particle probes. Nat Biotechnol 22: 883–887.Google Scholar
  50. 50.
    Evans, M., Sewter, C., and Hill, E., 2003 An encoded particle array tool for multiplex bio-assays. Assay Drug Dev Technol 1: 199–207.Google Scholar
  51. 51.
    Smartbead Technologies website, UltraPlexTM Barcodes Molecules. http://www.smartbead.com
  52. 52.
    Finkel, N.H., Lou, X., Wang, C., and He, L., 2004 Barcoding the microworld. Anal Chem 76: 352A–359A.Google Scholar
  53. 53.
    Penn, S.G., He, L., and Natan, M.J., 2003 Nanoparticles for bioanalysis. Curr Opin Chem Biol 7: 609–615.Google Scholar
  54. 54.
    Zhou, H., Roy, S., Schulman, H., and Natan, M.J., 2001 Solution and chip arrays in protein profiling. Trends Biotechnol 19: S34–39.Google Scholar
  55. 55.
    Nicewarner-Pena, S.R., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D., and Natan, M.J., 2001 Submicrometer metallic barcodes. Science 294: 137–141.Google Scholar
  56. 56.
    Walton, I.D., Norton, S.M., Balasingham, A., He, L., Oviso, D.F., Jr, Gupta, D., Raju, P.A., Natan, M.J., and Freeman, R.G., 2002 Particles for multiplexed analysis in solution: detection and identification of striped metallic particles using optical microscopy. Anal Chem 74: 2240–2247.Google Scholar
  57. 57.
    Freeman, R.G., Raju, P.A., Norton, S.M., Walton, I.D., Smith, P.C., He, L., Natan, M.J., Sha, M.Y., and Penn, S.G., 2005 Use of nanobarcodes particles in bioassays. Methods Mol Biol 303: 73–83.Google Scholar
  58. 58.
    Galitonov, G.S., Birtwell, S.W., and Zheludev, N.I., 2006 High capacity tagging using nanos-tructured diffraction barcodes. Optics Express 14: 1382–1387.Google Scholar
  59. 59.
    Speicher, M.R., Gwyn Ballard, S., and Ward, D.C., 1996 Apr Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12: 368–375.Google Scholar
  60. 60.
    Morrison, L.E. and Legator, M.S., 1997 Two-color ratio-coding of chromosome targets in fluorescence in situ hybridization: Quantitative analysis and reproducibility. Cytometry 27: 314–326.Google Scholar
  61. 61.
    Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., and Kettman, J.R., Jr, 1997 Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43: 1749–1756.Google Scholar
  62. 62.
    Dias, D., Va n Doren, J., Schlottmann, S., Kelly, S., Puchalski, D., Ruiz, W., Boerckel, P., Kessler, J., Antonello, J.M., Green, T., Brown, M., Smith, J., Chirmule, N., Barr, E., Jansen, K.U., and Esser, M.T., 2005 Optimization and validation of a multiplexed luminex assay to quantify antibodies to neutralizing epitopes on human papillomaviruses 6, 11, 16, and 18. Clin Diagn Lab Immunol 12: 959–969.Google Scholar
  63. 63.
    Dunbar, S.A., 2006 Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363: 71–82.Google Scholar
  64. 64.
    Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., and Minthon, L., 2006 Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: A follow-up study. Lancet Neurol 5: 228–234.Google Scholar
  65. 65.
    Lash, G.E., Scaife, P.J., Innes, B.A., Otun, H.A., Robson, S.C., Searle, R.F., and Bulmer, J.N., 2006 Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST. Quant J Immunol Meth 309: 205–208.Google Scholar
  66. 66.
    Chen, R., Lowe, L., Wilson, J.D., Crowther, E., Tzeggai, K., Bishop, J.E., and Varro, R., 1999 Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin Chem 45: 1693–1694.Google Scholar
  67. 67.
    Morgan, E., Varro, R., Sepulveda, H., Ember, J.A., Apgar, J., Wilson, J., Lowe, L., Chen, R., Shivraj, L., Agadir, A., Campos, R., Ernst, D., and Gaur, A., 2004 Cytometric bead array: A multiplexed assay platform with applications in various areas of biology. Clin Immunol 110: 252–266.Google Scholar
  68. 68.
    Tarnok, A., Hambsch, J., Chen, R., and Varro, R., 2003 Cytometric bead array to measure six cytokines in twenty-five microliters of serum. Clin Chem 49: 1000–1002.Google Scholar
  69. 69.
    Goix, P, 2006. Single molecule “flow immunoassay” detection: Repurposing existing marker for clinical validation. CHI Clinical Biomarker Summit Presentation, San Diego.Google Scholar
  70. 70.
    Krutzig, P.O. and Nolan, G.P., 2006 Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signal profiling. Nature Meth 3: 361–368.Google Scholar
  71. 71.
    Chan, W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., and Nie, S., 2002 Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13: 40–46.Google Scholar
  72. 72.
    Gao, X., Chan, W.C., and Nie, S., 2002 Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7: 532–537.Google Scholar
  73. 73.
    Gao, X. and Nie, S., 2005 Quantum dot-encoded beads. Methods Mol Biol 303: 61–71.Google Scholar
  74. 74.
    Han, M., Gao, X., Su, J.Z., and Nie, S., 2001 Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19: 631–635.Google Scholar
  75. 75.
    Bhalgat, M.K., Haugland, R.P., Pollack, J.S., Swan, S., and Haugland, R.P., 1998 Green- and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry. J Immunol Methods 219: 57–68.Google Scholar
  76. 76.
    Wang, L. and Tan, W., 2006 Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6: 84–88.Google Scholar
  77. 77.
    Lian, W., Litherland, S.A., Badrane, H., Tan, W., Wu, D., Baker, H.V., Gulig, P.A., Lim, D.V., and Jin, S., 2004 Ultrasensitive detection of biomolecules with fluorescent dye-doped nano-particles. Anal Biochem 334: 135–144.Google Scholar
  78. 78.
    Mattheakis, L.C., Dias, J.M., Choi, Y.J., Gong, J., Bruchez, M.P., Liu, J., and Wang, E., 2004 Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 327: 200–208.Google Scholar
  79. 79.
    Xu, H., Sha, M.Y., Wong, E.Y., Uphoff, J., Xu, Y., Treadway, J.A., Truong, A., O'Brien, E., Asquith, S., Stubbins, M., Spurr, N.K., Lai, E.H., and Mahoney, W., 2003 Multiplexed SNP genotyping using the Qbead system: A quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31: e43.Google Scholar
  80. 80.
    Eastman, P.S., Ruan, W., Doctolero, M., Nuttall, R., de Feo, G., Park, J.S., Chu, J.S.F., Cooke, P., Gray, J.W., Li, S., and Chen, F.F., 2006 Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6: 1059–1064.Google Scholar
  81. 81.
    Gunderson, K.L., Kruglyak, S., Graige, M.S., Garcia, F., Kermani, B. G., Zhao, C., Che, D., Dickinson, T., Wickham, E., Bierle, J., Doucet, D., Milewski, M., Yang, R., Siegmund, C., Haas, J., Zhou, L., Oliphant, A., Fan, J.B., Barnard, S., and Chee, M.S., 2004 Decoding randomly ordered DNA arrays. Genome Res 14: 870–877.Google Scholar
  82. 82.
    Dejneka, M.J., Streltsov, A., Pal, S., Frutos, A.G., Powell, C.L., Yost, K., Yuen, P.K., Müller, U., and Lahiri, J., 2003 Rare earth-doped glass microbarcodes. Proc Natl Acad Sci U S A 100: 389–393.Google Scholar
  83. 83.
    Garcia-Vidal, F.J. and Pendry, J.B., 1996 Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77: 1163–6.Google Scholar
  84. 84.
    Helmenstine, A., Uziel, M., and Vo-Dinh, T., 1993 Measurement of DNA adducts using surface-enhanced Raman spectroscopy. J Toxicol Environ Health 40: 195–202.Google Scholar
  85. 85.
    Nie, S. and Emory, S.R., 1997 Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275: 1102–1106.Google Scholar
  86. 86.
    Isola, N.R., Stokes, D.L., and Vo-Dinh, T., 1998 Surface-enhanced Raman gene probe for HIV detection. Anal Chem 70: 1352–1356.Google Scholar
  87. 87.
    Cao, Y.C., Jin, R., and Mirkin, C.A., 2002 Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297: 1536–1540.Google Scholar
  88. 88.
    Cao, Y.C., Jin, R., Nam, J.M., Thaxton, C.S., and Mirkin, C.A., 2003 Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 125: 14676–14677.Google Scholar
  89. 89.
    Doering, W.E. and Nie, S., 2003 Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem 75: 6171–6176.Google Scholar
  90. 90.
    Faulds, K., Smith, W.E., and Graham, D., 2004 Jan 15 Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem 76: 412–417.Google Scholar
  91. 91.
    Graham, D., Mallinder, B.J., Whitcombe, D., Watson, N.D., and Smith, W.E., 2002 Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Anal Chem 74: 1069–1074.Google Scholar
  92. 92.
    Lu, Y., Liu, G.L., Kim, J., Mejia, Y.X., and Lee, L.P., 2005 Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5: 119–124.Google Scholar
  93. 93.
    Kraemer, T., Antonenko, V.V., Mortezaei, R., Kulikov, N.V. 2002 Encoding technologies. In Handbook of Combinatorial Chemistry: Drugs, Catalysts, Materials, 170–189. Wiley-VCH, Weinheim.Google Scholar
  94. 94.
    Cain, J.T., Clark, W.W., Schaefer, L.A., Ulinski, D.J., Mickle, M.H., and Mandecki, W.M., 2001 Energy harvesting for DNA gene sifting and sorting. Int J Parallel Distrib Syst Netw 4: 140–149.Google Scholar
  95. 95.
    Mandecki, W, Pappas, M, Kogan, N, Wang, Z, Zamlynny, B. 2002 Light-powered micro-transponders for high multiple-level analyses of nucleic acids. ACS Symposium Series 815, 57–69.Google Scholar
  96. 96.
    Czarnik, A.W., 1997 Encoding strategies in combinatorial chemistry. Proc Natl Acad Sci U S A 94: 12738–12739.Google Scholar
  97. 97.
    Ohlmeyer, M.H., Swanson, R.N., Dillard, L.W., Reader, J.C., Asouline, G., Kobayashi, R., Wigler, M., and Still, W.C., 1993 Complex synthetic chemical libraries indexed with molecular tags. Proc Natl Acad Sci U S A 90: 10922–10926.Google Scholar
  98. 98.
    Chun, S., Xu, J., Cheng, J., Ding, L., Winograd, N., and Fenniri, H., 2006 Spectroscopically encoded resins for high throughput imaging time-of-flight secondary ion mass spectrometry. J Comb Chem 8: 18–25.Google Scholar
  99. 99.
    Fenniri, H., Chun, S., Ding, L., Zyrianov, Y., and Hallenga, K., 2003 Preparation, physical properties, on-bead binding assay and spectroscopic reliability of 25 barcoded polystyrene-poly (ethylene glycol) graft copolymers. J Am Chem Soc 125: 10546–10560.Google Scholar
  100. 100.
    Fenniri, H., Terreau, O., Chun, S., Oh, S.J., Finney, W.F., and Morris, M.D., 2006 Classification of spectroscopically encoded resins by Raman mapping and infrared hyper-spectral imaging. J Comb Chem 8: 192–198.Google Scholar
  101. 101.
    Su, X., Zhang, J., Sun, L., Koo, T.W., Chan, S., Sundararajan, N., Yamakawa, M., and Berlin, A.A., 2005 Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5: 49–54.Google Scholar
  102. 102.
    Brenner, S. and Lerner, R.A., 1992 Encoded combinatorial chemistry. Proc Natl Acad Sci U S A 89: 5381–5383.Google Scholar
  103. 103.
    Nam, J.M., Park, S.J., and Mirkin, C.A., 2002 Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124: 3820–3821.Google Scholar
  104. 104.
    Nam, J.M., Thaxton, C.S., and Mirkin, C.A., 2003 Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884–1886.Google Scholar
  105. 105.
    Storhoff, J.J., Marla, S.S., Bao, P., Hagenow, S., Mehta, H., Lucas, A., Garimella, V., Patno, T.J., Buckingham, W., Cork, W.H., and Müller, U.R., 2004b Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens Bioelectron 19: 875–883.Google Scholar
  106. 106.
    Georganopoulou, D.G., Chang, L., Nam, J.M., Thaxton, C.S., Mufson, E.J., Klein, W.L., and Mirkin, C.A., 2005 Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci U S A 102: 2273–2276.Google Scholar
  107. 107.
    Nam, J.M., Stoeva, S.I., and Mirkin, C.A., 2004 Bio-bar-code-based DNA detection with PCR-like sensitivity, J Am Chem Soc 126: 5932–5933.Google Scholar
  108. 108.
    Nam, J.-M., Wise, A.R., and Groves, J.T., 2005 Colorimetric bio-barcode amplification assay for cytokines. Anal Chem 77: 6985–6988.Google Scholar
  109. 109.
    Bao, Y.P., Wei, T.F., Lefebvre, P.A., An, H., He, L., Kunkel, G.T., and Müller, U.R., 2006 Detection of protein analytes via nanoparticle-based bio bar code technology. Anal Chem 78: 2055–2059.Google Scholar
  110. 110.
    Brongersma, M.L., 2003 Nanoscale photonics: Nanoshells: Gifts in a gold wrapper. Nat Mater 2: 296–297.Google Scholar
  111. 111.
    Gerhardt, W., Ljungdahl, L., Collinson, P.O., Lovis, C., Mach, F., Sylven, C., Rasmanis, G., Leinberger, R., Zerback, R., Muller-Bardorff, M., and Katus, H.A., 1997 An improved rapid troponin T test with a decreased detection limit: A multicentre study of the analytical and clinical performance in suspected myocardial damage. Scand J Clin Lab Invest 57: 549–557.Google Scholar
  112. 112.
    Siddiqui, J. and Remick, D.G., 2003 Improved sensitivity of colorimetric compared to chemi-luminescence ELISAs for cytokine assays. J Immunoassay Immunochem 24: 273–283.Google Scholar
  113. 113.
    Saviranta, P., Okon, R., Brinker, A., Warashina, M., Eppinger, J., and Geierstanger, B.H., 2004 Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin Chem 50: 1907–1920.Google Scholar
  114. 114.
    Bao, P., Frutos, A.G., Greef, C., Lahiri, J., Müller, U., Peterson, T.C., Warden, L., and Xie, X., 2002 High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal Chem 74: 1792–1797.Google Scholar
  115. 115.
    Wei, J., Mu, Y., Song, D., Fang, X., Liu, X., Bu, L., Zhang, H., Zhang, G., Ding, J., Wang, W., Jin, Q., and Luo, G., 2003 A novel sandwich immunosensing method for measuring cardiac troponin I in sera. Anal Biochem 321: 209–216.Google Scholar
  116. 116.
    Ihara, T., Tanaka, S., Chikaura, Y., and Jyo, A., 2004 Preparation of DNA-modified nanopar-ticles and preliminary study for colorimetric SNP analysis using their selective aggregations. Nucleic Acids Res 32: e105.Google Scholar
  117. 117.
    Storhoff, J.J., Lucas, A., Müller, U.R., Bao, Y.P., Senical, M., and Garimella, V., 2006 U.S. Patent Appl. No. 20050250094.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Uwe R. Müller
    • 1
  1. 1.Nanosphere, Inc.NorthbrookUSA

Personalised recommendations