Microarrays pp 271-297 | Cite as

Biochip Platforms for DNA Diagnostics

  • Anil K. Deisingh
  • Adilah Guiseppi-Wilson
  • Anthony Guiseppi-Elie
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter looks at the use of microlithographically fabricated biochip platforms for DNA diagnostics and prognostics, although protein and RNA biochips are also briefly considered. Biodetection methods such as ion-selective electrodes (ISEs), microelectromechanical systems (MEMS) devices such as microcantilevers, optical, piezoelectric-based acoustic wave, and mass spectrometry are briefly discussed. Emphasis is given to label-free electrochemical (impedimetric, voltammet-ric, and amperometric) detection. The production of DNA biochips is highlighted as are the operation and design of the experiments to reveal gene expression and SNP data. Applications discussed include the monitoring of microbes, cancer classification studies, and patient stratification in drug development. Finally, challenges and issues facing the development of diagnostic and prognostic biochips are discussed in detail.


Molecular Diagnostics Severe Acute Respiratory Syndrome Differential Gene Expression Profile Molecular Diagnostics Laboratory Differential Drug Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the industrial consortium of the Center for Bioelectronics, Biosensors and Biochips and by the Commonwealth Technologies Research Fund (CTRF) Grant SE2002-02. This chapter is dedicated to the memory of Dr. Anil K. Deisingh who passed away on October 21st, 2005 and was at the time a member of the technical staff of the Analytical Chemistry and Microbiology Services Unit, Caribbean Industrial Research Institute, University of the West Indies Campus, St. Augustine, Republic of Trinidad & Tobago.


  1. 1.
    Guiseppi-Elie, A. (2003) Biochip platforms for DNA diagnostics. Business Briefing: PharmaTech, London, World Markets Research Centre, p. 87.Google Scholar
  2. 2.
    Persidis, A. (1998) Nature Biotechnology, 16, 981–983.CrossRefGoogle Scholar
  3. 3.
    Proudnikov, D., Timofeev, E., and Mirzabekov, A. (1998) Immobilization of DNA in poly-acrylamide gel for the manufacture of DNA and DNA–oligonucleotide microchips. Analytical Biochemistry 259(1), 34–41. Llewellyn, B., Lebed, J., and Chik, V. (2002), Scholar
  4. 4.
    Seetharaman, S., Zivarts, M., Sundarsan, N., and Breaker, R.R. (2001) Nature Biotechnology, 19, 336–341.CrossRefGoogle Scholar
  5. 5.
    Wagner, P. and Kim, R. (May 2002), pp. 23–28.
  6. 6.
    Gad-el-Hak, Mohamed, Ed. (2001) The MEMS Handbook. CRC Press, Boca Raton, FL. The MEMS Exchange (2002),
  7. 7.
    Christian, G.D. (1994) Analytical Chemistry, 5th ed., Chapter 13. Wiley, New York, 384–397.Google Scholar
  8. 8.
    Cunningham, A.J. (1998) Introduction to Bioanalytical Sensors, Techniques in Analytical Chemistry. John Wiley & Sons, Inc. New York.Google Scholar
  9. 9.
    A. Guiseppi-Elie and L. Lingerfelt “Impedimetric Detection of DNA Hybridization: Towards Near Patient DNA Diagnostics” In Immobilization of DNA on Chips I (2005); Christine Wittmann, Ed.; Topics in Current Chemistry Vol. 260, Springer Berlin, Heidelberg. pp 161–186.Google Scholar
  10. 10.
    Turner, A.P.F. and Newman, J.D. (1998) Biosensors for Food Analysis, A.O. Scott (Ed.). Royal Society of Chemistry, Cambridge, pp. 1–10.Google Scholar
  11. 11.
    Steemers, F.J. and Walt, D.R. (1999) Multi-analyte sensing: from site-selective deposition to randomly-ordered addressable optical sensors. Microchimica Acta, 131 (1–2): 99–105.CrossRefGoogle Scholar
  12. 12.
    Brogan, K.L. and Walt, D.R. (2005) Optical fiber-based sensors: Application to chemical biology. Current Opinion in Chem. Biology, 9, 494–500.CrossRefGoogle Scholar
  13. 13.
    Hall, E.A.H. (1990) Biosensors. Open University Press, Milton Keynes,UK.Google Scholar
  14. 14.
    Blohm, D.H. and Guiseppi-Elie, A. (2001) Current Opinion in Biotechnology, 12, 41–47.CrossRefGoogle Scholar
  15. 15.
    Wang, J. (2000) Nucleic Acids Research, 28 (16), 3011–3016.CrossRefGoogle Scholar
  16. 16.
    Schena, M. (2002) Microarray Analysis. Wiley-Liss, New York.Google Scholar
  17. 17.
    NCBI (2003) (accessed on May 5th, 2008).
  18. 18.
    Draghici, S. (2003) Data Analysis Tools for DNA Microarrays. Chapman & Hall/CRC, Boca Raton, FL.CrossRefGoogle Scholar
  19. 19.
    Vahey, M., Nau, M.E., Barrick, S., Cooley, J.D., Sawyer, R., Sleeker, A.A., Vickerman, P., Bloor, S., Larder, B., Michael, N.L., and Wegner, S.A. (1999) Journal of Clinical Microbiology, 37, 2533–2537.Google Scholar
  20. 20.
    Golub, T.R., Slonim, D.K., Tamayo,P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caliguiri, M.A., Bloomfield, C.D., and Lander, E.S. (1999) Science, 286, 531–537.CrossRefGoogle Scholar
  21. 21.
    Taylor, S., Smith, S., Windle, B., and Guiseppi-Elie, A. (2003) Impact of surface chemistry and blocking strategies in DNA microarrays. Nucleic Acids Research, 31(16), e87.CrossRefGoogle Scholar
  22. 22.
    Windle, B. and Guiseppi-Elie, A. (2003) Microarrays and gene expression profiling applied to drug research. In Burger's Medicinal Chemistry, 6th ed., D.J. Abraham (Ed.). Wiley, New York.Google Scholar
  23. 23.
    Willis, R.C. (2003), Monitoring microbes. Modern Drug Discovery, January, 16–21.Google Scholar
  24. 24.
    Bekal, S., Brousseau, R., Masson, L., Prefontaine, G., Fairbrother, J., and Harel, J. (2003) Journal of Clinical Microbiology, 41, 2113–2125.CrossRefGoogle Scholar
  25. 25.
    Volokhov, D., Rasooly, A., Chumakov, K., and Chizhikov, V. (2002) Journal of Clinical Microbiology, 40, 4720–4728.CrossRefGoogle Scholar
  26. 26.
    Hanna, G.J., Johnson, V.A., Kuritzkes, D.R., Richman, D.D., Martinex-Picado, J., Sutton, L., Hazelwood, J.D., and D'Aquila, R.T. (2000) Journal of Clinical Microbiology, 38, 2715–2721.Google Scholar
  27. 27.
    Li, J., Chen, S., and Evans, D.H. (2001) Journal of Clinical Microbiology, 39, 696–704.CrossRefGoogle Scholar
  28. 28.
    Chizhikov, V., Wagner, M., Ivshina, A., Hoshino, Y., Kapikian, A.Z., and Chumakov, K. (2002) Journal of Clinical Microbiology, 40, 2398–2407.CrossRefGoogle Scholar
  29. 29.
    Wang, D., Coscoy, L., Zylberberg, M., Avila, P.C., Boushey, H.A., Ganem, D., and DeRisi, J.L. (2002) Proceedings of the National Academy of Sciences of the USA, 99, 15687–15692.CrossRefGoogle Scholar
  30. 30.
    Higgins, J.P.T., Shinghal, R., Gill, H., Reese, J.H., Terris, M., Cohen, R.J., Fero, M., Pollack, J.R., vandeRijn, M., and Brooks, J.D. (2003) American Journal of Pathology, 162(3), 925–932.Google Scholar
  31. 31.
    Archer, K.J., Dumur, C.I., Scott Taylor, G., Chaplin, M.D., Guiseppi-Elie, A., Buck, G., Grant, G., Ferreira-Gonzalez, A., and Garrett, C. (2008) A disattenuated correlation estimate when variables are measured with error: Illustration estimating cross-platform correlations. Statistics in Medicine, 27(7), 1026–1039.CrossRefGoogle Scholar
  32. 32.
    Archer, K.J., Dumur, C.I., Taylor, G.S., Chaplin, M.D. Guiseppi-Elie, A., Grant, G., Ferreira-Gonzalez, A., and Garrett,,C. (2007) Application of a correlation correction factor in a micro-array cross-platform reproducibility study. BMC Bioinformatics, 8, 447.CrossRefGoogle Scholar
  33. 33.
    Martinez, J.M., Aragon, A.D., Rodriguez, A.L., Weber, J.M., Timlin, J.A., Sinclair, M.B., Haaland, D.M., and Werner-Washburne, M. (2003) Nucleic Acid Research, 31 (4), e18.CrossRefGoogle Scholar
  34. 34.
    van Brunt, J. (2003) Signals Magazine (online), 25th April 2003,
  35. 35.
    SNP Consortium (2001) (accessed on May 5th, 2008)
  36. 36.
    NIH New Advisory (October 2002) (accessed on May 5th, 2008)
  37. 37.
    McNeely, G. (May 5th, 2003) Small Times On-Line IEEE (accessed on May 5th, 2008)
  38. 38.
    Gupta, R., Kim, J.P., Spiegel, J., and Ferguson, S.M (2004) Developing products for personalized medicine: NIH research tools policy applications. Personalized Medicine 1(1): 115–124.CrossRefGoogle Scholar
  39. 39.
    Ginsburg, G.S. and Angrist, M. (2006) The future may be closer than you think: a response from the Personalized Medicine Coalition to the Royal Society's report on personalized medicine. Personalized Medicine, 3(2): 119–123.CrossRefGoogle Scholar
  40. 40.
    Giles, F.J., Cortes, J.E., and Kantarjian, H.M. (2005) Targeting the kinase activity of the BCR-ABL fusion protein in patients with chronic myelogenous leukemia. Current Molecular Medicine 5(7):615–623.CrossRefGoogle Scholar
  41. 41.
    Druker, B.J.,Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., and Ford, J.M. (2001) The New England Journal of Medicine, 344(14), 1031–1037.CrossRefGoogle Scholar
  42. 42.
    Case-Green, S.C., Mir, K.U, Pritchard, C.E., Southernn, E.M. (1998) Analysing genetic information with DNA arrays. Current Opinion in Biotechnology 2, 404–410.CrossRefGoogle Scholar
  43. 43.
    Anthony Guiseppi-Elie, Scott Taylor, Louise Lingerfelt, Chris Nixon, Ryan Georgiana, Joy Kim, Stephanie Smith, Brad Mangrum and Nicholas Farell “Studies of the Interaction of Platinum Drugs with DNA Using Oligonucleotide Microarrays” Macromolecular Symposia (2006) 235(1), 115–120CrossRefGoogle Scholar
  44. 44.
    CTRF Consortium of Virginia (accessed on May 5th, 2008)
  45. 45.
    Lingerfelt, L., Karlinsey, J., Landers, J., and Guiseppi-Elie, A. (2008) Impedimetric detection for DNA hybridization within microfluidic biochips. In Microchip-Based Assay Systems Methods in Molecular Biology, Pierre N. Floriano, Ed.; Royal Society of Chemistry. Humana Press, NJ. vol. 385, Chapter 8, pp 103–120.Google Scholar
  46. 46.
    Katz, E. and Willner, I. (2003) Probing biomolecular interactions at conductive and semicon-ductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors. Electroanalysis, 15, 913–947.CrossRefGoogle Scholar
  47. 47.
    Hang Tin, C. and Guiseppi-Elie, A. (2004) Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosensors and Bioelectronics 19, 1537–1548.CrossRefGoogle Scholar
  48. 48.
    Guiseppi-Elie, A., Brahim, S., and Wilson, A. (2007) Biosensors based on electrically conducting polymers. In Handbook of Conducting Polymers: Conjugated Polymer Processing and Applications; 3rd ed., T. Skotheim and J.R. Reynolds (Eds.). Taylor and Francis, New York. Chapter 12, pp. 12:1–12:45.Google Scholar
  49. 49.
    Davenport, R.J. (2001) Microarrays: Data standards on the horizon. Science, 292, 414–415.CrossRefGoogle Scholar
  50. 50.
    Williams, E. (2002) Gene Chips: Science and Policy Basics, 2002 Virginia Biotechnology Summit and Governor's Conference on Technology Transfer and University Research, McLean, Virginia, October 14–16.Google Scholar
  51. 51.
    Johns, D.J.; Brettwisch, R., and Lebovitz, R. (1991) Patenting DNA: Letter to the editor. Science, 254 (5036), 1276.Google Scholar
  52. 52.
    Williams, E.D. (2001) The policy and ethics of DNA chip technologies. In N. Fujiki, M. Sudo, and D.R.J. Macer (Eds.), Bioethics and the Impact of Human Genome Research in the 21st Century: Pharmacogenomics, DNA polymorphism and Medical Genetics Services, 104–109, Eubios Ethics Institute, Tsukuba, Japan.Google Scholar
  53. 53.
    Wengel, J. (2004) Analyst, 2, 277–280.Google Scholar
  54. 54.
    Niemeyer, C.M. (2002) The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol., 20, 395–401.CrossRefGoogle Scholar
  55. 55.
    Niemeyer, C.M. (2002) Nanotechnology: Tools for the biomolecular engineer. Science, 297 (5578), 62–63.CrossRefGoogle Scholar
  56. 56.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and La Bean, T.H. (2003) Science, 301, 1882–1884.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anil K. Deisingh
    • 1
  • Adilah Guiseppi-Wilson
    • 2
  • Anthony Guiseppi-Elie
    • 1
  1. 1.Center for Bioelectronics, Biosensors and Biochips (C3B), Department of Chemical and Biomolecular Engineering, Department of BioengineeringClemson University, 100, Technology DriveAndersonUSA
  2. 2.ABTECH Scientific, Inc.RichmondUSA

Personalised recommendations